7,822 research outputs found
The Content-Dependence of Imaginative Resistance
An observation of Hume’s has received a lot of attention over the last decade and a half: Although we can standardly imagine the most implausible scenarios, we encounter resistance when imagining propositions at odds with established moral (or perhaps more generally evaluative) convictions. The literature is ripe with ‘solutions’ to this so-called ‘Puzzle of Imaginative Resistance’. Few, however, question the plausibility of the empirical assumption at the heart of the puzzle. In this paper, we explore empirically whether the difficulty we witness in imagining certain propositions is indeed due to claim type (evaluative v. non-evaluative) or whether it is much rather driven by mundane features of content. Our findings suggest that claim type plays but a marginal role, and that there might hence not be much of a ‘puzzle’ to be solved
Phase Statistics of Soliton
The characteristic function of soliton phase jitter is found analytically
when the soliton is perturbed by amplifier noise. In additional to that from
amplitude jitter, the nonlinear phase noise due to frequency and timing jitter
is also analyzed. Because the nonlinear phase noise is not Gaussian
distributed, the overall phase jitter is also non-Gaussian. For a fixed mean
nonlinear phase shift, the contribution of nonlinear phase noise from frequency
and timing jitter decreases with distance and signal-to-noise ratio.Comment: 8 pages, submitted to JOSA
Android Malware Clustering through Malicious Payload Mining
Clustering has been well studied for desktop malware analysis as an effective
triage method. Conventional similarity-based clustering techniques, however,
cannot be immediately applied to Android malware analysis due to the excessive
use of third-party libraries in Android application development and the
widespread use of repackaging in malware development. We design and implement
an Android malware clustering system through iterative mining of malicious
payload and checking whether malware samples share the same version of
malicious payload. Our system utilizes a hierarchical clustering technique and
an efficient bit-vector format to represent Android apps. Experimental results
demonstrate that our clustering approach achieves precision of 0.90 and recall
of 0.75 for Android Genome malware dataset, and average precision of 0.98 and
recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2017
Mechanism of Seasonal Arctic Sea Ice Evolution and Arctic Amplification
Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents-Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas
- …