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Abstract 

The olfactory bulb glomerulus is a discrete and heterogeneous neuropil where 

olfactory receptor cell axons synapse with dendrites of mitral, tufted and periglomerular 

neurons. In the first study, we investigated the organization of the glomerular neuropil by 

using antibodies to both single and double-labeled constituents for analyses with confocal 

microscopy. Electron microscopy was used to assess the distribution of synapses within 

the glomerulus. The olfactory bulbs of adult Sprague-Dawley rats were processed for 

immunocytochemistry with olfactory marker protein (OMP), synaptophysin, synapsin 1, 

glial fibrillary acidic protein (GFAP) and/or microtubule associated protein 2 (MAP2). 

Double labeling for OMP and MAP2 revealed two distinct subcompartments within 

glomeruli. Synaptophysin and synapsin 1 also showed differential labeling with the 

glomerulus. Electron micrograph reconstructions of glomeruli revealed interdigitating 

axonal and dendritic subcompartments, where primary afferent axodendritic and local 

circuit dendrodendritic synapses segregated within the glomerulus into the axonal and 

dendritic subcompartments, respectively. These results support the hypothesis of 

subcompartmental organization within olfactory bulb glomeruli. In the second study, we 

employed similar techniques to better understand the maturation of glomeruli and to 

examine the spatio-temporal interactions that occur during postnatal development. 

Sprague-Dawley rats at postnatal days 1,6, 12, and 18 were processed for single and 

double label immunocytochemistry for OMP, growth associated protein (GAP-43), and 

synaptophysin. Mature adult-like subcompartmental organization within the glomerulus 

emerged by postnatal day 12. Earlier in development immature axons entered the core of 

the glomerulus and moved to the periphery as they matured. However, beginning around 

12 days postnatal, immature axons distributed in the periphery and moved toward the 

core as they matured. This change in the trajectories of axons into glomeruli suggests 

that different rules may be followed in establishing versus maintaining glomeruli. 
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Figure 1; An overview of the anatomy of the olfactory system. Olfactory receptor cells 

located in the olfactory epithelium project to the olfactory bulb to make synapses with 

mitral and tufted cells. These neurons form the output of the olfactory bulb and project to 

the olfactory cortex. The olfactory bulb exhibits a distinctly laminar organization, each 

layer containing highly differentiated cell types. It has recently been demonstrated that 

the olfactory epithelium may be divided into four distinct spatial zones (roman numerals 

I-IV). In each of these zones a distinct and nonoverlapping set of olfactory receptors are 

expressed. Abbreviations: AOB, accessory olfactory bulb; c.f., centrifugal fiber; Gj, deep 

granule cell; G^, superficial granule cell; M, mitral cell; OSN, olfactory receptor cell; P, 

periglomerular cell; r.c., recurrent collateral; T, tufted cell. (From Shepherd and Greer, 

1997) 
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The Glomerulus as a Functional Unit 

The glomerulus is a complex and discrete neuropil that is the site of the initial 

synapse in the olfactory pathway. Each olfactory receptor cell terminates in a single 

glomerulus, while the primary dendrite of each mitral and tufted cell also enters a single 

glomerulus. Studies in the rabbit have estimated that a single glomerulus receives input 

from 25,000 olfactory receptor cell axons, and that about 25 mitral cells and 10-15 tufted 

cells send dendritic processes to each glomerulus (Allison and Warwick, 1949). These 

spherical structures range from 30-100 |im in diameter (Allison and Warwick, 1949; 

Baier and Korsching, 1994) and number between 1000-3000 depending on the species, 

approximately 3000 in rats (Meisami and Safari, 1981). 

There is increasing evidence that the olfactory bulb glomerulus serves as a 

fundamental organizational unit in odor coding. Functional analyses of the rat olfactory 

bulb using activity mapping studies with 2-deoxyglucose have demonstrated that specific 

odorants produced spatially defined patterns of glomerular activity in the olfactory bulb 

(Stewart et al., 1979; Greer et al., 1982). Moreover, these patterns of 2-deoxyglucose 

uptake elicited by different odors appear distinct for different odors. Similar results have 

been obtained using c-FOS immunocytochemistry (Guthrie et al., 1995). In addition, 

optical recordings of the olfactory bulb using voltage sensitive dyes have also 

demonstrated that single odors produce diffuse yet circumscribed patterns of activity 

(Kauer et al., 1987). 

Electrophysiologic studies have further shown that mitral cells associated with 

individual glomeruli respond differentially or are “tuned” to specific odorants (Buonviso 
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and Chaput, 1990; Mori et al., 1992). Indeed, extracellular spike responses recorded 

from single mitral cells were found to be maximally responsive to a specific odorant. 
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Figure 2: Basic synaptic circuitry of the olfactory bulb. Olfactory receptor cell axons 

form synapses with the dendrites of mitral, tufted, and periglomerular neurons. 

Periglomerular cells are interneurons, forming interglomerular connections. Mitral and 

tufted cells are the output neurons and project to the olfactory bulb. Further odor 

processing occurs via granule cells, which form synapses with mitral and tufted cells. 

ONL, olfactory nerve layer; GLOM, glomerular layer; FPL, external plexiform layer; 

MCL, mitral cell layer; GL, granule cell layer; ON, olfactory nerve fiber; PG, 

periglomerular cell; Tm, tufted cell; Ml, mitral cell; Gd, deep granule cell; Gs, 

superficial granule cell; LOT, lateral olfactory tract. (From Shepherd, 1990)These 

studies are consistent with the recent demonstration that axons terminating in any one 

glomerulus are derived from olfactory receptor neurons that express the same putative 

odor receptor (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996). Thus 

each glomerulus in the mammalian olfactory bulb expresses a specific molecular 

phenotype based on the subpopulation of receptor cells that innervate the glomerulus. 

These studies provide strong support for the notion that the topographic projections of 

olfactory receptor cell axons onto glomeruli provide the basis for a highly organized and 

spatially stereotyped map that encodes odor quality in the olfactory bulb. 
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Heterogeneity of the Glomerulus 

Initially, the glomerulus was perceived as a relatively homogeneous structure in 

which primary afferent axons and target dendrites were uniformly distributed. However, 

numerous lines of evidence have suggested that the intrinsic organization of a single 

glomerulus may exhibit significant complexity and heterogeneity. 

Camera lucida reconstructions performed by Halasz and Greer (1993) 

demonstrated that the terminal arbors of olfactory receptor cell axons are spatially 

restricted to small areas or subcompartments within an individual glomerulus, suggesting 

that afferent input to a glomerulus may be spatially segregated. Similarly, Treloar et al. 

(1996) showed that olfactory receptor cell axons entering a single glomerulus can 

differentially express cell surface markers such as the lectin Dolichos biflorus. 

Moreover, these subsets of axons can segregate into different areas of a single 

glomerulus, supporting the notion that phenotypically distinct subsets of olfactory 

receptor cells may target the same glomerulus. 

Ultrastructural studies of glial processes in the glomerulus have demonstrated two 

glomerular compartments consisting of a glia-free olfactory receptor cell axon 

compartment and a dendritic compartment containing glial processes (Chao et al., 1997). 

The two compartments appeared segregated, in part, by a glial boundary. Additionally, 

Kosaka et al. (1997) described similar findings showing a differential distribution of 

periglomerular cell dendrites to different glomerular subcompartments. 

These observations support the idea that the mammalian olfactory bulb 

glomerulus can consist of several different subcompartments that may restrict the 

distribution of both primary afferents as well as local synaptic circuits. Similar 
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suggestions have been made based on previous studies in the olfactory lobe of the insect 

(Boeckh and Tolbert, 1993; Hansson et al., 1991) as well as the crustacean (Schmidt and 

Ache, 1992). 

Development of the Glomerulus 

Analyses of the early development of the glomerulus have emphasized the 

seminal role of primary afferents in inducing the formation of glomeruli (Graziadei and 

Monti-Graziadei, 1986; Malun and Brunjes, 1996; Valverde et ah, 1992; Treloar et ah, 

1999). In mammals, glomeruli are first apparent during late embryonic development. 

During the postnatal period glomeruli increase in size and definition with a now general 

consensus that new glomeruli are not formed de novo beyond postnatal days 2-5 

(Meisami and Sendera, 1993). 

Functional analyses of olfactory bulb glomeruli using 2-deoxyglucose probes 

have suggested that mature, adult-like patterns of odor induced activity are not apparent 

until approximately postnatal week 2. This suggests that while initial glomeruli are 

present during the early postnatal period, substantial development and maturation 

continues for a more extended period. This notion is supported by the work of Hinds and 

Hinds (1976a,b) who demonstrated that synaptogenesis in the olfactory glomeruli of mice 

continued into postnatal week 2. Similarly, Malun and Brunjes (1996) have shown that 

the development of dendritic arbors in both the rat and precoccial opposum can continue 

well into the postnatal period. 
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Statement of purpose and hypothesis 

The purpose of the first study was to explore the cellular and synaptic 

organization of the olfactory bulb glomerulus and to pursue the hypothesis of a 

subcompartmental organization. In collaboration with Hahnah J. Kasowski, we 

examined glomerular organization using confocal microscopy and markers for various 

cellular components. Immunocytochemistry using olfactory marker protein (OMP), 

which is specific for olfactory receptor cell axons, and microtubule associated protein 

(MAP2), which is specific for dendrites, were performed to the assess the distribution of 

axonal and dendritic processes within the glomerulus. Immunocytochemistry for glial 

fibrillary acidic protein (GFAP), a marker for glial processes, was employed to assess the 

distribution of glial processes. The distributions of two synaptic vesicle proteins, 

synapsin I and synaptophysin, were visualized with immunocytochemistry in conjunction 

with double labeling studies with OMP and MAP2. To more closely examine the 

subcompartments identified by the preceding immunocytochemical studies, electron 

microscopy was utilized. These results have been published as follows: 

Kasowski, H., Kim, H. and Greer, C. (1999) Compartmental organization of the 

olfactory bulb glomerulus. The Journal of Comparative Neurology 407: 261-274. 

The purpose of the second study, completed as a result of work performed 

independently, was to gain new insight into the maturation of glomeruli and to better 

understand the spatio-temporal interactions that occur during postnatal development. We 

employed confocal microscopy to visualize the organization of immature and mature 
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olfactory receptor cell axons in parallel with a marker for synaptic specializations in 

maturing glomeruli to document the emergence of subcompartmental organization in 

olfactory bulb glomeruli during postnatal development. Rats at postnatal days 1,6, 12, 

and 18 were processed for single and double label immunocytochemistry for OMP, used 

as a marker of mature axons; growth associated protein (GAP-43), used as a marker for 

immature axons; and synaptophysin, used to distinguish synaptic connections. Light 

microscopy was also used to visualize cresyl violet stained sections of the olfactory bulb 

at similar ages. These results have been accepted for publication and the manuscript is in 

press as follows: 

Kim. H. and Greer, C. (2000) The emergence of compartmental organization in olfactory 

bulb glomerui during postnatal development. The Journal of Comparative Neurology, In 

Press. 
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Materials and Methods 

ADULTS 

Immunocytochemistry 

Sprague-Dawley rats (n = 12), 50 - 60 days old, were deeply anesthetized with an 

intraperitoneal pentobarbital (Nembutal 65mg/kg) and fixed by cardiac perfusion with 

O.IM phosphate buffered saline (PBS), pH = 7.2, at 4°C followed by 200-400ml of 4% 

paraformaldehyde at 4°C. Following perfusion the brains were removed and placed in 

4% paraformaldehyde for 1-2 hr at 4°C. Brains were then transferred to O.IM PBS and 

stored overnight at 4°C. Sections were cut at SOpm on a vibratome and collected in O.IM 

PBS. Sections were either directly processed for immunocytochemistry or were 

transferred to tissue culture wells containing 30% sucrose for long term storage at 0°C. 

These stored sections were washed with several rinses of O.IM PBS before processing for 

immunocytochemistry. 

Following several rinses in O.IM PBS, sections were preincubated in O.IM PBS, 

1% bovine serum albumen (BSA, Sigma; St. Louis, MO), and 0.2% Triton X-100 for 30 

minutes Sections were again rinsed 5X5 minutes in O.IM PBS and then processed 

individually or sequentially with two of the following primary antibodies: goat anti¬ 

olfactory marker protein (OMP) (1:3,000, generously provided by Dr. F. Margolis); 

mouse anti-microtubule associated protein II (MAP2) (1:500, Sigma; St. Louis, MO); 

mouse or rabbit anti-synaptophysin (1:100, mouse, ICN Biochemicals; Costa Mesa, CA; 

1:100, rabbit, Dako Inc.; Glostrup, Denmark); rabbit anti-synapsin I (1:2,000, Signal 
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Transduction Inc.; San Diego, CA); or rabbit anti-glial fibrillary associated protein 

(GFAP) (1:2,000, Dako Inc.). Tissue was incubated with the primary antibodies for 24- 

48 hr at 4°C. Dilutions were made with O.IM PBS; 0.5% BSA, and 0.2% Triton X-100 

was added to the OMP incubation. The protocol for synapsin 1 was as previously 

described (Mandel et al., 1992) and differs from the above as follows: sections were 

preincubated for 30 minutes with goat serum dilution buffer (0.45M NaCl, 20mM PB, 

17% whole goat serum) and were incubated with the primary antibody, diluted in goat 

serum dilution buffer, for 4-6 hours. Following primary antibody incubation, sections 

were rinsed in buffer (0.5M NaCl, 20mM PB, 0.3% Triton X-100). For each single and 

combination of staining preparations, tissue was processed as a negative control by 

omitting the primary antibody. 

After 5X5 minute washes in O.IM PBS, the sections were incubated with 

secondary antibodies for 1-2 hours at room temperature. All secondary antibodies were 

purchased from Vector (Burlingame, CA) and used at 1:100 concentration except where 

indicated below. Secondary antibodies used were fluorescein horse anti-mouse IgG, 

texas red horse anti-mouse IgG, texas red donkey anti-goat IgG (Jackson 

Immunoresearch Laboratory Inc.; West Grove, PA), texas red donkey anti-rabbit IgG 

(Jackson Immunoresearch Laboratory Inc.; West Grove, PA), fluorescein conjugated 

AffiniPure donkey anti-rabbit IgG, fluorescein goat anti-rabbit IgG. Dilutions were made 

with O.IM PBS, 0.5% BSA except for the synapsin I-labeled sections for which the 

secondary antibody was diluted in goat serum dilution buffer. The sections were rinsed 

in O.IM PBS and mounted on gelatin-coated slides and coverslipped using Vectashield 

mounting medium (Vector). Mounted sections were viewed on a Bio-Rad 600 scanning 
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confocal microscope (Olympus IMT2) equipped with a krypton-argon laser. Images 

were processed on a Macintosh 7200 computer using Adobe Photoshop (3.0.1) software 

and printed with a Codonix NP1600M color printer. Image brightness was equalized 

across panels but further processing was not employed. 

Electron Microscopy 

Electron microscopy protocols followed those we have previously described 

(Greer and Halasz, 1987). Rats were deeply anesthetized as above and subjected to an 

intracardiac perfusion with 4°C O.IM PBS followed by 1% glutaraldehyde and 4% 

paraformaldehyde at 4°C in O.IM PBS. Olfactory bulbs were dissected and post-fixed in 

the perfusate overnight. Coronal sections were cut at lOOpm on a vibratome and the 

tissue was osmicated with 2% osmium tetrachloride for 1 hour. A series of graded 

alcohol washes followed the osmication, beginning with 50% EtOH for 10 minutes and 

70% EtOH for 10 minutes. The sections were then stained en bloc with 1% uranyl 

acetate in 70% EtOH for 1 hour. Alcohol washes continued with 70% EtOH for 10 

minutes, 90% EtOH for 10 minutes, three washes of absolute EtOH for 15 minutes each 

and 2 washes with propylene oxide for 5 minutes each. The sections were then left 

overnight in a 1:1 propylene oxide/EPON mixture on a shaker. The following day, 

sections were infiltrated with EPON (EPON 812) for 2 hours, flat-embedded in fresh 

EPON onto quick-release coated (Hobby Time Mold Parting Compound; Electron 

Microscopy Sciences, Et. Washington, PA) slides, coverslipped with quick release coated 

coverslips and polymerized in a 60°C oven overnight. Slides were examined with a light 

microscope and following removal from the slide/coverslip, areas of the EPON film 
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containing tissue of interest were cut out and remounted on EPON blocks for thin 

sectioning. Blocks were trimmed to ensure that 1 or more glomeruli were within the area 

being cut and then thin sectioned at 70-100nm, silver sections. Two x 1mm slotted grids 

covered with formvar (0.5% in ethylene dichloride) were used to collect the sections. 

The grids were post-stained with 1% lead citrate for 1.5 minutes. A JEOL 1200 EXll 120 

kV transmission electron microscope was used for the microscopic/photographic analysis 

of the tissue. 

Electron micrograph montages of individual glomeruli were collected at 800X 

and, following printing at a final magnification of 2,080X, were used to assess the area 

2 
(pm ) occupied by ORC axons within the glomerulus. The individual electron 

micrographs were combined to make a montage that included an entire glomerulus in 

cross section. The axonal areas, which can be distinguished from dendritic areas due to 

their relative electron density, were then outlined in pen to readily distinguish them from 

2 
apposed dendritic areas. Planimetry was employed to establish the area (pm ) of the 

2 
glomerulus and the area (pm ) occupied by the axonal profiles within the glomerulus. 

The perimeter of the glomerulus was defined by surrounding juxtaglomerular cells. 

To examine the synaptic specializations within the glomerulus, columns or rows 

of overlapping electron micrographs, probes, that passed through the height or width, 

respectively, of the glomerulus were collected at 12,000X and printed at 30,000X. These 

micrographs were then montaged together such that a reconstructed probe through one 

glomerulus was typically more than six feet in length. All of the synapses within a probe 

were highlighted and then identified as being axodendritic, dendrodendritic mitral/tufted 

to periglomerular cell, or dendrodendritic periglomerular to mitral/tufted cell. The type 
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and orientation of the synapses was clearly distinguishable in approximately 70% of 

synapses due to differences in synaptic vesicle morphology or the appearance of the 

synaptic membrane specializations (vide infra). It was not possible to consistently 

distinguish whether the postsynaptic process in axodendritic connections was from a 

mitral/tufted or periglomerular cell because the synaptic specializations are identical. 

In order to test the hypothesis that primary afferent synapses are located at more 

distal sites on dendritic processes relative to local circuit or dendrodendritic synapses 

which may be found more proximally, we measured the cross sectional diameters of 

mitral/tufted dendritic processes that were postsynaptic to periglomerular cells or 

dendrites postsynaptic to ORC axons. In total, 200 dendrites receiving dendrodendritic 

synapses and 200 dendrites receiving axodendritic synapses were measured. The cross 

sectional dendritic diameter was determined in each case by measuring the dendrite in 

both the perpendicular and parallel planes relative to the postsynaptic specialization. 
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DEVELOPMENTAL 

Animals 

All protocols and animals used were reviewed and approved by the Yale Animal 

Care and Use Committee. Sprague-Dawley rats, postnatal day 1 (n=4), 6 (n=4), 12 (n=4), 

and 18 (n=5), were deeply anesthetized with an intraperitoneal injection of pentobarbital 

(Nembutal 65 mg/kg) and perfused through the heart with O.IM phosphate buffered 

saline (PBS) (pH=7.4) at 4°C followed by 100-200 ml of 4% paraformaldehyde in O.IM 

PBS at 4°C. The brains were then removed and immersed in 4% paraformaldehyde for 

1-2 hours at 4°C before washing in O.IM PBS for 24 hours at 4°C. The olfactory bulbs 

were then embedded in 2% agar and coronal sections cut at 50pm on a vibratome. The 

sections were collected in a cryoprotectant, 30% sucrose, for storage at -20°C prior to 

processing for immunocytochemistry. 

Alternatively, Sprague-Dawley rats at postnatal days 0 (n=2), 6 (n=2), 12 (n=2) 

and 18 (n=2) were processed for paraffin embedding following perfusion and dissection 

as described above. The olfactory bulbs were cut at 10 pm in the coronal plane and 

stained with thionine for histological analysis. 

Immunocytochemistry 

Selection of Antibodies 

To identify mature olfactory receptor cell axons we employed anti-olfactory 

marker protein (OMP). OMP is a cytoplasmic protein that is highly specific to the 

majority of olfactory receptor cell axons in the olfactory bulb (Ring et ah, 1997; 
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Margolis, 1985; Monti-Graziadei et al., 1980) and upregulates as the axons mature and 

establish synapses (Verhaagen et ah, 1989, 1990). Although some populations of OMP 

expressing cells are found outside of the olfactory bulb (Baker et ah, 1989), these are 

unlikely to compromise the analyses because they do not project processes to the 

olfactory bulb glomeruli. To identify immature olfactory receptor cell axons we 

employed anti-growth associated protein-43 (GAP-43). GAP-43 is a membrane 

associated protein found in growing immature axons (Meiri et ah, 1988) and is abudantly 

expressed in immature olfactory receptor cell axons prior to the appearance of OMP 

(Verhaagen et ah, 1989, 1990; Gong and Shipley, 1995; Treloar et ah, 1996). It is 

important to note that GAP-43 expression is not limited to olfactory receptor cell axons, 

it may also be expressed in juxtaglomerular cells and centrifugal axons during 

development. However, because the majority of staining appears in olfactory receptor 

cell axons and because contributions from other cell populations are transient, GAP-43 

proved to be the most effective marker of developing olfactory receptor cell axons. 

Finally, anti-synaptophysin was employed as a marker for the presence of synaptic 

vesicles (Jahn and Sudhof, 1994). While not a definitive measure of synapse formation, 

synaptophysin staining does establish the presence of a synaptic vesicle associated 

protein and has been effectively employed to determine the appearance (Johnson et ah, 

1996) and distribution (Kasowski et ah, 1999) of synapses in the olfactory bulb 

glomerulus as well as elsewhere in the CNS (e.g. Tyzio et ah, 1999). 

Staining Protocol 

The protocol for immunocytochemistry was described previously (Kasowski et 

ah, 1999). Briefly, the tissue sections stored at -20°C were washed with several rinses of 
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O.IM PBS before processing for immunocytochemistry. All immunocytochemical 

reactions were performed on free floating sections. Following 2x10 minute rinses in 

O.IM PBS, sections were preincubated in O.IM PBS with 1% bovine serum albumin 

(BSA, Sigma Chemical Co.) and 0.2% triton X-100 (Sigma Chemical Co.) for 30 minutes 

at room temperature. Sections were then rinsed 5x7 minutes in O.IM PBS with 0.5% 

BSA at room temperature before incubating for 24-48 hours at 4°C in one of the 

following antibodies: goat anti-OMP (1:1000, generously provided by Dr. F. Margolis); 

rabbit anti-synaptophysin (1:100, Dako Co.); mouse anti-GAP-43 (1:500, Boehringer 

Mannheim). Dilutions were made in O.IM PBS with 0.5% BSA. Sections were then 

rinsed 5x7 minutes in O.IM PBS with 0.5% BSA before incubating for 1 hour at room 

temperature in one of the following secondary antibodies: rhodamine (TRITC)- 

conjugated AffiniPure donkey anti-goat IgG (H-i-L) (Jackson ImmunoResearch Labs, 

Inc.); fluorescein goat anti-rabbit IgG (H+L); Texas red goat anti-rabbit IgG (H+L) 

(1:200); fluorescein horse anti-mouse IgG (H-i-L), rat adsorbed. All secondary antibodies 

were purchased from Vector Labs, Inc. and used at a concentration of 1:100, except 

where noted above. Processing was then repeated as above using a second set of primary 

and secondary antibodies before mounting on precleaned slides and coverslipping with 

Vectashield mounting medium (Vector Labs, Inc.). The sequence in which the primary 

antibodies were used in the double labeling studies was varied to ensure that the patterns 

of labeling did not reflect the processing sequence. 
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Controls 

To control for non-specific and artifactual staining, the primary antibodies were 

excluded in a series of experiments at each of the ages. In all cases, staining did not 

occur in the absence of the primary antibody. 

Light and Confocal Microscopy 

The cresyl violet stained sections were assessed on an Olympus BH2 microscope 

and representative images were captured at 1200 dpi into Adobe Photoshop using a Spot 

Camera (Diagnostic Instruments Inc., Sterling Heights, MI). 

Mounted sections processed for immunocytochemistry were visualized and 

images were collected using a Bio-Rad 600 scanning confocal microscope (Olympus 

IMT2) equipped with a krypton-argon laser. The average thickness of optical sections 

from which images were obtained was approximately LOpm. Serial reconstructions were 

used to evaluate multiple images viewed through the depth of a tissue sample. To 

minimize regional differences in the organization (e.g. Ring et al., 1997) or maturation 

(e.g. Bailey et al., 1999) of the olfactory bulb, data acquisition and analysis focused on 

sections taken from midway along the rostral-caudal axis. To ensure that the edges of 

glomeruli were not misinterpreted as sections passing through the center of a glomerulus, 

all glomeruli included in the analyses and used for illustration in the manuscript were at 

least partially viewed through serial optical sections on the confocal microscope. The 

magnifications used in all of the illustrations were selected to emphasize the features of 

interest for each of the antibodies at each of the representative ages. 
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A Macintosh 7200 computer equipped with Adobe Photoshop (3.0.1) software was used 

to format and present the images, which were printed on a Codonix NP1600M color 

printer. Image brightness and contrast were balanced for consistency within a figure, but 

further processing was not performed on any of the images. 
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Results 

ADULTS 

Increasing evidence indicates that the olfactory bulb glomerulus serves as a 

fundamental organizational unit for odor representation. Activity mapping studies with 

2-deoxyglucose (2DG) demonstrated that specific odorants elicited spatially defined 

patterns of glomerular activity in the olfactory bulb (Greer et ah, 1982; Jourdan et ah, 

1980; Lancet et ah, 1982; Stewart et ah, 1979). Similar results have been obtained by 

using cFOS immunocytochemistry (Guthrie et ah, 1995; Onoda, 1992; Sallaz and 

Jourdan, 1993). Electrophysiological studies have further demonstrated that the mitral 

cells associated with individual glomeruli are differentially responsive or “tuned” to 

specific odorants (Buonviso and Chaput, 1990; Mori et ah, 1992). These functional 

analyses are consistent with the recent demonstration that axons from olfactory receptor 

cells (ORC) expressing the same odor receptor converge onto only two or a few 

glomeruli in the olfactory bulb (Mombaerts et ah, 1996; Ressler et ah, 1994; Vassar et ah, 

1994). 

The glomerulus is a complex and well delineated neuropil that is the site of the 

first synapse in the olfactory pathway (for reviews see: Shepherd and Greer, 1998; 

Shipley and Ennis, 1996). The spherical or ovoid glomeruli are defined by glial 

wrappings and surrounding somata of peri/juxtaglomerular cells. Within glomeruli dense 

networks of ORC axons make excitatory synapses onto the dendritic processes of 

projection neurons, mitral and tufted cells, and local circuit intemeurons, periglomerular 
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cells. The dendritic processes interact via reciprocal dendrodendritic synapses which 

modulate intraglomerular processing of odor. While glomerular synapse structure has not 

yet been fully characterized, it is interesting to note the unusually high concentrations of 

at least one synaptic vesicle associated protein, synapsin 2, in olfactory receptor cell axon 

terminals (Stone et al., 1994). 

Despite the recent emphasis on the functional and structural homogeneity of 

individual glomeruli, several alternative lines of evidence have suggested that the 

intrinsic organization of single glomeruli can be very complex. Halasz and Greer (1993) 

showed that the terminal arbors of ORC axons are spatially restricted to small areas or 

subcompartments within a glomerulus suggesting that afferent input to a glomerulus may 

be heterogeneous or spatially segregated. Similarly, Treolar et al. (1996) showed that 

ORC axons entering a single glomerulus can differ in their expression of cell surface 

markers such as the lectin Dolichos biflorus and moreover, that these subpopulations of 

axons can segregate into different areas of a single glomerulus. In a related context, 

Johnson et al. (1996) noted that intraglomerular immunoreactivity for synaptophysin was 

most dense along the periphery of glomeruli, proximal to the olfactory nerve layer, 

suggesting that synapses may be heterogeneously distributed within glomeruli. 

Chao et al. (1997), in ultrastructural studies of glial processes in the glomerulus, 

identified two glomerular compartments: 1) a glial free ORC axon compartment; and 2) 

a dendritic compartment that contained glial processes. The two compartments appeared 

segregated, in part, by a glial boundary. Recently, Kosaka et al. (1995, 1997) reported 

similar findings on the segregation of periglomerular cell dendrites to different 

glomerular compartments. Periglomerular cell dendrites that were immunoreactive for 



■.V. 

I .ol^ 

fj 



24 

anti-calbindin were restricted to the dendritic compartments while those immunoreactive 

for either gamma aminobutyric acid (GABA) or tyrosine hydroxylase were uniformly 

distributed throughout the glomerulus. Consistent with the differential distribution of 

calbindin immunoreactive processes, Toida et al. (1998) reported that this subpopulation 

of periglomerular cell dendrites received almost no synaptic input from ORC axons. 

These recent observations appear consistent with the notion that the mammalian 

glomerulus can be composed of several subcompartments that may restrict the 

distribution of subsets of primary afferents as well as segregating primary afferent and 

local synaptic circuits. Such an organization has been previously described in the 

olfactory lobe of both the insect (Boeckh and Tolbert, 1993; Hansson et al., 1991) as well 

as the crustacean (Schmidt and Ache, 1992). 

The purpose of the current study was to explore further the synaptic organization 

of olfactory bulb glomerular compartments. The data demonstrate that the glomerulus is 

a complex heterogeneous structure. Primary afferent synapses are restricted to axonal 

compartments while dendrodendritic local circuit synapses occur predominately in 

dendritic compartments that are delineated in part by glial processes. These results 

support the hypothesis of a subcompartmental organization within olfactory bulb 

glomeruli. 

Characterization of Axonal and Dendritic Processes By OMP. MAP2 and GFAP 

Immunoreactivity 

OMP and MAP2 
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As is well known, OMP immunoreactivity (OMP-IR) identifies ORC axons in the 

olfactory bulb (Margolis, 1972). OMP-IR was densely distributed in the olfactory nerve 

layer and glomerular layer of the olfactory bulb (Figure 3A). Fascicles expressing OMP- 

IR were evident exiting the olfactory nerve layer to enter individual glomeruli (i.e. Figure 

3A, arrowhead). Upon entering the glomerulus the fascicles dissociated into islands of 

dense OMP-IR alternating with areas devoid of OMP-IR. Because the islands of OMP- 

IR were larger in diameter than single ORC axons (~0.2|Lim) it seems likely that these 

islands represent conglomerations of axons and/or terminal enlargements (cf. Figure 5). 

Because OMP-IR left adjacent areas in the glomerular neuropil unstained, we 

used MAP2-IR to assess the distribution of dendritic processes within the glomerulus. 

MAP2 is associated with cytoskeletal elements found specifically in dendrites (Caceres et 

al., 1986) and is effective in identifying the dendritic constituents of glomeruli (Philpot et 

al., 1997). MAP2-IR was evident in the external plexiform and glomerular layers of the 

olfactory bulb; no MAP2-IR was found in the olfactory nerve layer (Figure 3B). In the 

external plexiform layer both radially and horizontally stained processes were present. 

Emerging from the dense staining of the external plexiform layer were individual radially 

oriented processes that arborized into progressively smaller branches after entering 

glomeruli. Surrounding the glomeruli and within the external plexiform layer non-IR 

somata of juxtaglomerular neurons were evident. The distinct MAP2-IR processes 

extending from the external plexiform layer to the glomerular layer to enter individual 

glomeruli seem most likely to represent the apical dendrites of mitral and tufted cells. 

The dendritic processes emanating from the population of juxtaglomerular neurons are 

less evident because of their smaller size and because they arborize immediately at the 
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Figure 3 : Confocal images, reconstructed from serial optical planes, of OMP, MAP2, 

synaptophysin, or synapsin 1 immunoreactivity (IR) in the superficial layers of the 

olfactory bulb. (A) OMP-IR shows the distribution of olfactory receptor cell axons 

within the olfactory nerve layer and glomerular layer. Arrowheads indicate the fascicles 

of ORC axons approaching the glomerulus. Upon entering the glomerulus the fascicles 

dissociated into islands of dense OMP-IR alternating with areas devoid of IR. (B) 

MAP2-IR is associated with dendritic processes in the glomerular layer and external 

plexiform layer. Individual dendrites, indicated by arrowheads, are shown emerging 

from the dense staining of the external plexiform layer and traveling to individual 

glomeruli were they then arborized into progressively smaller branches. (C) A punctate 

pattern of synaptophysin immunoreactivity is found throughout the glomerulus as well as 

in the external plexiform layer. Synaptophysin-IR was not evident in the olfactory nerve 

layer and only rarely seen juxtaglomerularly in the glomerular layer. Within the 

glomerulus synaptophysin-IR is heterogeneous in that there appear zones that are more 

densely IR. The glomerular pattern of synapsin 1-IR (D) was generally similar to that of 

synaptophysin although the synapsin 1-IR puncta were more granular in appearance and 

the overall IR appeared more diffuse. Also in contrast to synaptophysin, significant 

staining was seen in the juxtaglomerular zone between glomeruli. Abbreviations; OMP- 

IR, olfactory marker protein immunoreactivity; MAP2, microtubule associated protein 2; 

ONL, olfactory nerve layer; GLL, glomerular layer; FPL, external plexiform layer. 









28 

Figure 4: Confocal images, reconstructed from serial optical planes, of combinations of 

OMP, MAP2, GFAP, synaptophysin, and synapsin 1 IR. (A,B) OMP-IR and MAP2-IR 

are seen to occupy distinct areas within the glomerulus. OMP-IR axonal processes 

(green) are seen distributing into islands of dense IR indicated by aiTowheads. Individual 

dendritic processes (red; i.e., arrows) interdigitate between the OMP-IR with minimal 

colocalization. (C) OMP (green; i.e., arrow) and GFAP-IR (red/yellow; i.e., arrows), 

which identifies glial processes, are shown. Note how the glial processes appear to 

dissect between OMP islands being primarily associated with non-OMP areas. (D, E) 

Doubled-labeled preparations with synaptophysin and OMP (D) or MAP2 (E). In (D) 

extensive colocalization (yellow; i.e., arrowheads) is apparent between synaptophysin-IR 

(red) and OMP-IR (green). At the upper left in (D) an OMP-IR fascicle, indicated by an 

arrow, is seen entering the glomerulus. Asterisks in (D) indicate areas of synaptophysin- 

IR (red) between areas of OMP-IR. Small puncta of individual OMP-IR and 

synaptophysin-IR were seen interspersed among colocalizing areas. In contrast, note the 

relative paucity of colocalization in MAP2-IR (red) and synaptophysin-IR (green) shown 

in (E). Individual dendrites entering the glomerulus from the EPL, labeled by MAP2, are 

indicated by arrows in (E). (F, G) Double-labeled preparations with synapsin I and OMP 

(F) or MAP2 (G) are shown. OMP-IR (green; i.e., arrowheads) and synapsin I-IR (red; 

i.e., asterisks) appeared largely distinct. While evidence of colocalization was seen, it 

was less robust than that seen with OMP/synaptophysin-IR or MAP2/synapsin I-IR. (G) 

Synapsin I-IR (red) colocalized strongly with MAP2-IR (green). In (G) it is notable that 

the areas of colocalization (yellow-orange) appear as well defined processes (i.e., arrows) 

as was seen in the MAP2-IR alone. Abbreviations: OMP-IR, olfactory marker protein 

immunoreactivity; MAP2, microtubule associated protein 2; GFAP, glial fibrillary 

associated protein; ONE, olfactory nerve layer; GEL, glomerular layer; EPL, external 

plexiform layer. 
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border of the glomerulus. 

To explore the interaction of ORC axons and dendritic processes within the 

glomerular neuropil tissue sections were double labeled using FITC and Texas Red 

secondary antibodies, respectively. The double labeling demonstrated that OMP-IR and 

MAP2-IR occupied distinct areas within the glomerulus. In Figure 4A,B OMP-IR axonal 

processes (green) are seen distributing in a pattern equivalent to that seen with OMP-IR 

alone (cf. Figure 3A). The areas of MAP2-IR dendritic processes (red) interdigitate 

between the distinct islands of predominately OMP-IR. In those areas where a 

suggestion of co-localization is seen (yellow) it most likely reflects tightly apposed or 

overlapping axonal and dendritic processes within the optical section and not the 

presence of both epitopes in a single process. Within the islands of OMP-IR there were 

puncta of MAP2-IR that may be suggestive of single or small groups of dendritic 

processes (cf. Figure 4D). In contrast, the areas of MAP2-IR did not show evidence of 

OMP-IR puncta. 

GFAP 

To further characterize the cellular elements comprising a glomerulus we used 

glial fibrillary acidic protein immunoreactivity (GFAP-IR) to visualize the glial processes 

(cf. Bailey and Shipley, 1993; Chiu and Greer, 1996). GFAP-IR processes were 

observed throughout the olfactory nerve layer, glomerular layer, and external plexiform 

layer. IR was intense in the olfactory nerve layer as bundles of ORC axons appeared 

ensheathed in dense glial processes, as has been previously described at the 

ultrastructural level (Doucette, 1993). In sections double labeled for GFAP-IR (red) and 
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OMP-IR (green) (Figure 4C) glial processes within the glomerulus appeared to follow 

tortuous courses as they interdigitated with the islands of OMP-IR. Areas of apparent 

colocalization of GFAP and OMP (yellow in Figure 4C) represent superimposed 

processes as well as some bleed through from the GFAP secondary antibody and not 

colocalization of the epitopes in the same process. 

Characterization Of Glomerular Synaptic Vesicle Associated Proteins 

Synaptophysin 

Several recent studies have used antibodies for synaptic vesicle associated 

proteins to visualize sites of synaptic specializations and to identify subpopulations of 

synapses based on differences in their associated vesicle proteins. Synaptophysin is an 

integral protein of the synaptic vesicle membrane and is thought to be involved in the 

formation of an exocytotic fusion pore during vesicle release (Jahn et al., 1985; Thomas 

et al., 1988). As seen in Figure 3C, a punctate pattern of synaptophysin IR is found 

throughout the glomerulus as well as in the external plexiform layer. Synaptophysin-IR 

was not evident in the olfactory nerve layer. Within the glomerulus it is clear that 

synaptophysin-IR is heterogeneous in that there appear zones, particularly around the 

glomerular border proximal to the olfactory nerve layer, that are more densely IR. The 

juxtaglomerular zones surrounding the glomeruli are largely devoid of synaptophysin-IR. 

Thus, the glomeruli appear very well demarcated as spheres of synaptophysin-IR. The 

small spherical areas within the glomeruli and external plexiform layer that are devoid of 

IR most likely correspond to juxtaglomerular cell bodies or blood vessels. 
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To establish the cellular localization of synaptophysin-IR, double labeling was 

performed with anti-OMP or anti-MAP2. There was extensive colocalization of 

synaptophysin-IR and OMP-IR (Figure 4D). In Figure 4D, a fascicle that is only OMP- 

IR is seen entering the glomerulus (arrow). Within the glomerulus much of the IR is 

yellow indicating a colocalization of the OMP-IR (green) and the synaptophysin-IR (red). 

Punctate areas of synaptophysin-IR alone were seen interdigitating among the islands of 

OMP-IR/synaptophysin-IR. In addition, within the islands of co-localization there was 

evidence of smaller puncta that were IR for either synaptophysin or OMP alone. Finally, 

while much of the OMP-IR appears co-localized with synaptophysin-IR, there were also 

OMP-IR alone regions that helped define the perimeter of the glomerulus. 

In contrast to the extensive co-localization of synaptophysin/OMP-IR, 

synaptophysin/MAP2-IR preparations demonstrated less intense co-localization. In 

Figure 4F synaptophysin-IR is seen diffusely throughout the glomerulus (cf. Figure 3C). 

MAP2-IR dendrites (red), seen entering from the external plexiform layer and arborizing 

within the glomerulus, do not heavily co-express synaptophysin-IR (yellow). 

Synapsin 1 

Synapsin I is also an integral membrane protein of small synaptic vesicles. It 

binds the actin cytoskeleton and is thought to regulate neurotransmitter release by 

controlling the number of vesicles available for exocytosis (Bahler et ah, 1990; Siidhof et 

ah, 1989). Stone et ah (1994) demonstrated that the synapsins have a differential 

distribution across the olfactory bulb. Synapsin 1 immunoreactivity was found to be 
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especially intense in the external plexiform and glomerular layers which suggested that 

synapsin 1 may be preferentially associated with dendrodendritic synapses. 

Synapsin 1-IR, like synaptophysin-IR, was found throughout the glomerulus and 

in the external plexiform layer (Figure 3D). The glomerular pattern of IR was generally 

similar to that of synaptophysin although the synapsin-IR puncta were more granular in 

appearance and the overall IR appeared more diffuse. Synapsin 1-IR was also more 

apparent than synaptophysin in the juxtaglomerular zone between glomeruli and appeared 

to demarcate the cytoplasm surrounding the nucleus of juxtaglomerular somata. 

In double labeled preparations, synapsin 1-IR (red) strongly colocalized with 

MAP2-IR (green) (Figure 4G). It is notable that the areas of colocalization (yellow- 

orange) appear as well defined processes as was seen in the MAP2-IR alone (cf. Figure 

3B). The MAP2/synapsin 1-IR colocalization appears superimposed on a background of 

granular appearing synapsin 1-IR alone. While evidence of colocalization was apparent 

in double labeled preparations with OMP and synapsin 1, (Figure 4F), it was less robust 

than that seen with OMP/synaptophysin-IR or MAP2/synapsin 1-IR. Synapsin 1-IR is 

seen between the larger islands of OMP-IR. Puncta of synapsin 1-IR are also observed 

within the OMP-IR areas, however synapsin 1 and OMP did not exhibit the robust 

colocalization seen with OMP and synaptophysin. 

Ultrastructural Characterization of the Olfactory Bulb Glomerulus 

EM preparations of the olfactory bulb glomerulus were used to determine whether 

the synaptic circuits of the glomerulus were compartmentalized as suggested by the 

immunocytochemistry preparations. Figure 5A is a montage of electron micrographs that 
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Figure 5: A glomerulus in cross section constructed from a montage of electron 

micrographs. The perimeter of the glomerulus is lined by juxtaglomerular cell bodies 

(i.e., aiTows; nuclei outlined in pen). In (A) a fascicle of ORC axons is seen entering the 

glomerulus from the upper left. Within the glomerulus, axonal islands (i.e., arrowheads), 

which are characterized in part by their relative electron density, were outlined in pen to 

more readily distinguish them from adjacent dendritic areas. Note the similarity to 

immunocytochemistry preparations where axonal subcompaitments are seen to 

interdigitate with non-axonal or dendritic areas. The inset (B) at top right shows a high 

magnification view of olfactory receptor cell axon terminals making Gray Type 1 

synapses (i.e., arrows) onto a dendritic process. Note the differences in electron density 

between dendrites and axons as well as the high packing density of vesicles within the 

axon terminals. Blood vessels (i.e., asterisks) were also seen in the glomerular layer. 

Abbreviations; D, dendrite; Ax, axonal terminal; AF, axon fascicle. Calibration Bars, A 

= 25pm; B = 0.5pm. 
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covers a single olfactory bulb glomerulus whose perimeter is defined by juxtaglomerular 

cell bodies. As has been previously noted (Pinching and Powell, 1972), ORC axons and 

terminals are relatively electron dense and can be distinguished from the electron lucent 

dendritic processes (Figure 5B). In Figure 5A a large fascicle of ORC axons is seen 

entering the glomerulus from the olfactory nerve layer. The fascicle, in which the axons 

are initially tightly apposed, disperses upon entering the glomerulus into smaller bundles 

of axons which interdigitate among electron lucent dendritic areas. This is reminiscent of 

the immunocytochemistry preparations where OMP-IR, which localizes to axons, was 

located throughout the glomerulus in islands that interdigitated with MAP2-IR, which 

visualizes dendritic processes. Blood vessels, which are seen as white areas devoid of 

cellular material (asterisk), are also seen dispersed throughout the glomerulus. 

Eleven glomeruli were reconstructed at 12,000X as shown in Figure 5. Using the 

Juxtaglomerular neurons as the defining border, these glomeruli had a mean area of 

2 
9,715.54 +/- 1,682.42 p,m . Cumulative analyses of those olfactory nerve terminals that 

were easily identified within these glomeruli (i.e. Figure 5) showed a mean area of 

2 
2,770.17 +/- 493.61|Lim . Because it seems unlikely that we successfully measured all of 

the olfactory nerve terminals within the glomeruli, we conservatively estimate that ORC 

axons occupied approximately 28% of the glomerular area. 

Both the immunocytochemical analyses and low magnification EM led to the 

hypothesis that axonal and dendritic compartments could be segregated within the 

glomerulus. To test this hypothesis, glomeruli were examined at higher magnification, 

where the primarily axonal and dendritic compartments were easily distinguishedwithin 
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Figure 6: Fligh magnification electron micrographs of the rat olfactory bulb glomerulus. 

(A) Cluster of four dendritic processes, most likely from mitral and tufted cells (MT), is 

surrounded by axonal processes. Several axodendritic synapses are indicated by arrows. 

These synapses are characterized by numerous round vesicles in the presynaptic 

specialization and a thick, asymmetrical opposing membrane on the postsynaptic 

dendrite. Within the glomerulus distinct axonal and dendritic areas could be 

differentiated. Dendritic areas were often seen to be circumscribed from axonal areas by 

glial processes (B, C). (B) Long, slender glial process (arrowheads) can be seen 

dissecting between the dendritic area (Den) below and the axonal area (Ax) above. A 

smaller dendritic bundle is seen in (C). Linear arrays of intermediate filaments, highly 

characteristic of glial cells, are indicated by arrowheads in (C). In (D), a mitral/tufted cell 

process is shown making a dendrodendritic synapse (arrow) onto a periglomerular cell 

dendrite (PG). Mitral/tufted cells have uniform small, round vesicles that are presynaptic 

to an asymmetric membrane thickening as is seen in axodendritic synapses. The 

reciprocal periglomerular cell to mitral/tufted cell dendrodendritic synapse is shown in E, 

which is an enlargement from B. Periglomerular cells have numerous pleomorphic 

vessels that are round or oval and are generally larger than those seen in the mitral/tufted 

cells. The periglomerular to mitral/tufted dendrodendritic synapse can be differentiated 

from the other pictured synapses by characteristic symmetrical pre- and postsynaptic 

membrane thickenings. Additionally, dendritic processes receiving dendrodendritic 

synapses were found to have a significantly larger mean diameter than those receiving 

axodendritic synapses. This difference is apparent in Figure 4B where dendritic 

processes in a dendritic subcompartment (Den) can be contrasted with those in an axonal 

subcompartment (Ax). Note that there are many dendritic processes that have a relatively 

large diameter in the dendritic subcompartment whereas the individual dendrites in the 

axonal area (d) are smaller. Abbreviations: Ax, olfactory receptor cell axon; Den, 

dendrite; MT, mitral/tufted cell dendrite; PG, periglomerular cell dendrite. Calibration 

Bars, A, C, D and E = O.Spm; B = l.Opm. 
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the glomerular neuropil (Figure 6A,B,C). In the axonal compartment ORC axons were 

readily recognized due to the electron dense appearance of the axons and terminal 

boutons (Figure 6A, cf. 6B). The axons characteristically had abundant, uniform 

spherical vesicles which appeared to be organized in a matrix that filled the axoplasm. 

Interspersed among the axon terminals were single or small clusters of dendritic 

processes that were often postsynaptic to the ORC axons (vide infra). In Figure 6A 

axonal processes are seen surrounding and making axodendritic Gray Type 1 synapses 

(arrows) onto a cluster of four dendritic processes that most likely come from 

mitral/tufted and/or periglomerular cells. Beyond the spherical vesicles noted above, 

these synapses were also characterized by the thick, asymmetrical membrane on the 

postsynaptic dendrite. While some dendrodendritic synapses among the small clusters of 

dendrites were noted within the islands of axonal processes, these were rare relative to 

the abundant axodendritic synapses found within axonal compartments, as was also 

observed by Chao et al. (1997). Of further interest, dendroaxonic synapses from 

mitral/tufted or periglomerular cells onto ORC axons were not observed. 

The dendritic compartments that interdigitated with the islands of ORC axons had 

clusters of dendrites ranging from five to more than a hundred processes. Though this 

represented a continuum from the number of dendritic processes that were grouped 

together within the axonal islands, these larger dendritic compartments appeared distinct 

from the smaller clusters in the patterns of synaptic interactions that were observed. The 

individual or small groups of dendrites located within the axonal areas were, as reported 

above, often postsynaptic to axonal processes. Axodendritic synapses were noted at the 

interface between axonal areas and the larger dendritic compartments, however, the 
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dendritic compartments showed a preponderance of dendrodendritic synapses. 

Moreover, no ORC axons, individually or in small groups, were noted within the 

dendritic areas. Furthermore, the dendritic compartments were often separated from 

adjacent axonal islands by glial processes (Figures 6B,C). Figure 6B shows the sinuous, 

slender process of a glial cell encircling a bundle of dendrites, separating them from the 

relatively electron dense axonal area seen above. In Figure 6C, a smaller bundle of 

dendrites is shown circumscribed by a glial process in which a bundle of intermediate 

filaments, characteristic of glial cells, is apparent. 

Within the dendritic compartment, dendrodendritic synaptic interactions were 

abundant. Mitral/tufted and periglomerular cells were identified based on differences in 

their synaptology and the appearance of their profile as has been previously described 

(Pinching and Powell, 1971; White, 1973). Mitral/tufted cells have uniform small, round 

vesicles that were presynaptic to an asymmetrical membrane thickening, a Gray Type 1 

synapse. The periglomerular cells have more numerous pleomorphic vesicles that were 

round or oval and are generally larger than those seen in the mitral/tufted cells and are 

presynaptic to a symmetrical membrane thickening, a Gray Type 2 synapse. Mitral/tufted 

dendrites also tend to present with a more regular outline while periglomerular cell 

dendrites are irregular in outline and give rise to small appendages. In Figure 6D a 

mitral/tufted cell is making a dendrodendritic Gray Type 1 synapse onto a periglomerular 

cell dendrite while the reciprocal Gray Type 2 periglomerular cell to mitral/tufted cell 

dendrodendritic synapse is shown in Figure 6E. Although these were occasionally seen 

as reciprocal synaptic pairs within a single section, they were most often seen as single 

synapses as illustrated. 
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9 
Figure 7: The frequency of axo- and dendrodendritic synapses per 40p,m“ in the rat 

glomerulus. Abbreviations: MT, mitral or tufted cell dendrite; ORC, olfactory receptor 

cell axon; PG, periglomerular cell dendrite. 
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The most abundant synapse category in the glomerulus was the olfactory nerve to 

9 
mitral/tufted cell dendrite (3.51 +/- .17 synapses/dOpm") followed by the olfactory nerve 

9 
to periglomerular cell dendrite (1.31 +/- .08 synapses/40pm“) (Figure 7). The 

dendrodendritic synapses found in the glomeruli did not correspond to the 1:1 ratio that 

has been previously reported. Mitral/tufted to periglomerular cell dendrites (0.52 +/- 0.05 

synapses/40|am ) occurred at less than half the frequency of the reciprocal periglomerular 

9 
to mitral/tufted synapse (1.07 +/- .08 synapsesMOpm") (Figure 7). 

As we examined the distribution and morphology of synapses within the 

glomerulus the hypothesis emerged that the axodendritic and dendrodendritic synapses 

might be further segregated with respect to a single dendrite such that axodendritic 

synapses might be located on smaller and presumably more distal processes than the 

dendrodendritic synapses. To test this hypothesis we carried out measurements of the 

dendritic processes that were postsynaptic to ORC axons or periglomerular cells. The 

cross sectional diameters were significantly smaller in processes receiving axodendritic 

synapses than in those receiving dendrodendritic synapses from periglomerular cells. 

The diameter of mitral/tufted processes receiving dendrodendritic synapses (x= 1.53|im 

+/- 0.05) was significantly larger than the diameter of dendrites receiving afferent 

axodendritic synapses (x=0.82 pm +/- 0.03; t=12.79; p<0.001). This difference is 

apparent in Figure 6B where dendrites in a dendritic subcompartment (Den) can be 

contrasted with those in an axonal subcompartment (Ax). Note that there are many 

dendritic processes that have a relatively large diameter in the dendritic subcompartment 

whereas the individual dendrites in the axonal area (d) are smaller. 
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DEVELOPMENTAL 

The olfactory bulb glomerulus is the site of the first synapse in the olfactory 

pathway. Axons from the olfactory receptor neurons in the olfactory epithelium 

terminate in the glomeruli on target dendrites from mitral, tufted and periglomerular 

neurons. It was recently established that the axons terminating in any one glomerulus are 

derived largely from olfactory receptor neurons that express the same odor receptor 

(Ressler et al., 1994; Vassar et al., 1994; Mombaerts et ah, 1996). Thus each glomerulus 

in the olfactory bulb expresses a specific molecular phenotype based on the subset of 

receptor cells that innervate the glomerulus. These observations, coupled with prior 

functional analyses of the rat olfactory bulb (Stewart et ah, 1979; Greer et ah, 1982; 

Johnson et ah, 1998, 1999), have provided strong support for the notion that the 

glomerulus is a fundamental organizational unit in odor coding (Shepherd, 1993). 

Similar conclusions have been reached based on both anatomical and functional analyses 

of glomeruli in several species including insects (e.g. Vickers et ah, 1998) and 

crustaceans (e.g. Schmidt and Ache, 1992) (see Hildebrand and Shepherd, 1997 for 

review). 

Initially, the glomerulus was viewed as a comparatively homogeneous structure in 

which primary afferent axons and target dendrites were uniformly distributed. However, 

more recent reconstructions of glomeruli have revealed a subcompartmental organization 

and segregation of synaptic circuits that was not previously recognized (Chao et ah, 

1997; Kosaka et ah, 1997; Kasowski et ah, 1999). In brief, the axons from olfactory 

receptor cells establish contiguous islands in the glomerulus within which they establish 
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synapses with isolated target dendrites. In contrast, the local circuit reciprocal 

dendrodendritic circuits are found within dendritic bundles that are segregated from the 

axonal islands by glial processes. The segregation of synapses appears significant for 

both the continual turnover of axons within glomeruli as well as the separation of primary 

afferent and local circuit synapses that are both using glutamate as their primary 

neurotransmitter. 

Analyses of early development of the glomerulus have emphasized the seminal 

role of primary afferents in inducing the formation of glomeruli (Graziadei and Monti- 

Graziadei, 1986; Malun and Brunjes, 1996; Valverde et al., 1992; Treloar et al., 1999; 

Bailey et al., 1999). Glomeruli are first apparent in the mammal during late embryonic 

development and during the postnatal period increase in size and definition. There is 

now a general consensus that new glomeruli are not formed de novo beyond postnatal 

days 2-5 (Meisami and Sendera, 1993). However, functional analyses of olfactory bulb 

glomeruli using probes such as 2-deoxyglucose have suggested that mature, adult-like 

patterns of odor induced activity are not apparent until around the 2"‘^ postnatal week 

(Greer et al., 1982). This suggests that while nascent glomeruli are present during the 

early postnatal period, substantive development/maturation continues for a more 

extended time. Support for this suggestion comes from the work of Hinds and Hinds 

(1976a,b) who demonstrated that synaptogenesis in the olfactory glomeruli of mice 

extended into the 2"^* postnatal week. Similarly, Malun and Brunjes (1996) have shown 

that the elaboration of dendritic arbors in both the precoccial opossum and in the rat can 

extend well into the postnatal period. 
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To gain new insights into the maturation of glomeruli we have examined the 

expression of growth associated protein-43 (GAP-43) as a marker of immature olfactory 

receptor cell axons, olfactory marker protein (OMP) as a marker of mature olfactory 

receptor cell axons and synaptophysin as a marker of synaptic structure, in developing 

glomeruli. Our data demonstrate that the adult-like pattern of organization within 

glomeruli emerges around 12 days postnatal. In addition, the data strongly suggest that 

the topography of glomerular innervation by newly arriving axons changes as glomeruli 

mature. The results provide new insights into not only the mechanisms of glomerular 

development, but also some of the apparent prerequisites for adult-like functioning in 

glomeruli. 

In general, the size of glomeruli increased proportionally to the age of the animal 

(Figure 8). As has been previously reported, while glomeruli can be detected during the 

perinatal period (Treloar et al., 1999), they are generally much smaller and more poorly 

defined by juxtaglomerular cells than at later ages (Greer et al., 1982; Meisami and 

Sendera, 1993; Malun andBrunjes, 1996). 

OMP selectively stains olfactory receptor cell axonal processes and was used as a 

marker of mature axons while GAP-43 was employed to identify immature axons in the 

olfactory bulb (Verhaagen et a., 1989). The synaptic vesicle associated protein 

synaptophysin was utilized to distinguish synaptic specializations. At each of the ages 

tested the antibodies employed exhibited distinct laminar and sublaminar patterns of 

staining. There was no evidence to suggest that the epitopes recognized by each of the 

antibodies were changing over the course of development. The characteristics of the 

immunostaining are described below for each of the ages examined. 
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Figure 8: Light micrographs of cresyl violet stained sections of the rat olfactory bulb at 

postnatal days 0 (A), 6 (B), 12 (C) and 18 (D). At all ages glomeruli are readily 

identified as spherical areas of neuropil (e.g. asterisks) suiTounded by the somata of 

juxtaglomerular cells. However, over the course of development the glomeruli increase 

in cross sectional diameter with a corresponding increase in the number of 

juxtaglomerular cells. ONL, olfactory nerve layer; GLL, glomerular layer; EPL, external 

plexiform layer; PND, postnatal day. Scale bar = 50 pm. 
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Figure 9; Confocal micrographs of olfactory marker protein (OMP), growth associated 

protein GAP-43, and synaptophysin immunoreactivity in the superficial layers of the rat 

olfactory bulb at postnatal day 1. A,B: OMP immunoreactivity in the olfactory nerve 

and glomerular layers appears diffuse and frayed. Axonal fascicles (e.g. arrow in B), 

travel through the nerve layer to target individual glomeruli. Within glomeruli areas of 

OMP immunoreactivity are interspersed with non-immunoreactive puncta (e.g. asterisk in 

B). In (A) an arrow indicates OMP"^ processes which extend beyond the inner boundaries 

of a glomerulus, toward the deeper regions of the olfactory bulb. C,D: GAP-43 staining 

is dense in the nerve layer while within glomeruli GAP-43 immunoreactivity often 

appeared more dense at the base of the many glomeruli, proximal to the nerve layer (e.g. 

arrow in C). E,F: Synaptophysin immunoreactivity clearly demarcates individual 

glomeruli. A punctate pattern of synaptophysin staining is evident within glomeruli. 

Varying levels of synaptophysin immunoreactivity as well as non-immunoreactive areas 

are also present. A similar distribution of synaptophysin staining is visible in the external 

plexiform layer (E). Non-immunoreactive processes within the glomerular and external 

plexiform layers likely correspond to blood vessels. ONE, olfactory nerve layer; GEL, 

glomerular layer; EPL, external plexiform layer; OMP, olfactory marker protein; GAP- 

43, growth associated protein-43; SYN, synaptophysin; PND, postnatal day. Scale bars = 

25p,m. 
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Figure 10: Confocal micrograph of olfactory marker protein (OMP), growth associated 

protein GAP-43, and synaptophysin immunoreactivity in the superficial layers of the rat 

olfactory bulb at postnatal day 6. A,B: OMP staining is dense in the nerve layer where 

axonal fascicles (e.g. arrow in A) can be seen exiting the nerve layer to target a 

glomerulus. OMP immunoreactivity within glomeruli presents a more adult-like 

appearance. Discrete or single OMP'^ processes can be seen both exiting the nerve layer 

to indirectly enter a glomerulus (e.g. arrow in B) and extending from a glomerulus to 

travel distally towards the deeper layers of the olfactory bulb (e.g. arrowhead in B). C,D: 

GAP-43 immunoreactivity is generally diffuse and punctate, although some GAP-43"^ 

processes (e.g. arrow in C) can be identified. GAP-43 staining within glomeruli appears 

slightly more intense at the base, proximal to the nerve layer. E,F: Synaptophysin 

staining clearly demarcates glomeruli. Within glomeruli, a punctate pattern of 

synaptophysin immunoreactivity is interspersed with non-immunoreactive areas. A 

similar pattern of synaptophysin staining is apparent in the external plexiform layer. 

ONL, olfactory nerve layer; GLL, glomerular layer; FPL, external plexiform layer; OMP, 

olfactory marker protein; GAP-43, growth associated protein-43; SYN, synaptophysin; 

PND, postnatal day. Scale bars = 25|Lim. 
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Figure 11; Confocal micrograph of olfactory marker protein (OMP), growth associated 

protein GAP-43, and synaptophysin immunoreactivity in the rat olfactory bulb at 

postnatal day 12. A,B: OMP immunoreactivity is dense in the nerve layer, where 

fascicles of axons (e.g. arrows in A and B), exit the nerve layer to enter glomeruli. 

Within glomeruli, contiguous islands of OMP staining (e.g. arrowhead in B), interdigitate 

with non-immunoreactive puncta (e.g. asterisks in B). B,C: The distribution of GAP-43 

immunoreactivity appears more diffuse and granular than that of OMP. GAP-43 staining 

is dense in the nerve layer, where axonal fascicles (e.g. arrows in C) travel through the 

nerve layer to target a glomerulus. Within glomeruli, GAP-43"' processes (e.g. arrow in 

D) intersperse with non-immunoreactive areas (e.g. asterisks in D). GAP-43 

immunoreactivity within glomeruli also appears slightly stronger at the apex, proximal to 

the nerve layer, and in the periphery of the glomerulus. E,F: Individual glomeruli are 

clearly demarcated by synaptophysin immunoreactivity. The distribution of 

synaptophysin staining is denser along the rim of the glomerulus (e.g. arrow in E). In (E) 

an arrowhead indicates an area of non-immunoreactivity within the external plexiform 

layer, where puncta of synaptophysin staining are otherwise broadly distributed 

throughout. These non-immunoreactive areas likely represent blood vessels cut within 

the plane of the tissue. ONE, olfactory nerve layer; GEL, glomerular layer; EPE, external 

plexiform layer; MCE, mitral cell layer; OMP, olfactory marker protein; GAP-43, growth 

associated protein-43; SYN, synaptophysin; PND, postnatal day. Scale bars = 25p,m. 
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Figure 12: Confocal micrograph of olfactory marker protein (OMP), growth associated 

protein GAP-43, and synaptophysin immunoreactivity in the rat olfactory bulb at 

postnatal day 18. A,B: OMP immunoreactivity appears similar to that at postnatal day 

12, although the density of stained processes appears to have increased. As fascicles of 

axons (e.g. arrow in B) enter a glomerulus, OMP staining appears to diminish, which may 

reflect axon defasciculation. Within glomeruli, contiguous islands or zones of OMP 

staining interdigitate with discrete areas of non-immunoreactivity (e.g. asterisks in B). 

C,D: GAP-43 immunoreactivity appears generally more granular than OMP. Although 

GAP-43 staining appears variable throughout the glomerular layer, contiguous zones of 

GAP-43 immunoreactivity are evident within individual glomeruli. GAP-43 staining also 

exhibits a higher density at the apex, proximal to the nerve layer, and in the periphery of 

the glomerulus. E,F: A punctate pattern of synaptophysin staining is apparent in the 

glomerular and external plexiform layers. The distribution of synaptophysin staining 

does not exhibit the contiguous zones of staining seen with OMP; however, puncta 

lacking immunoreactivity (e.g. arrow in E) can be seen within glomeruli. These non- 

immunoreactive areas most likely correspond to blood vessels. ONE, olfactory nerve 

layer; GLL, glomerular layer; EPL, external plexiform layer; OMP, olfactory marker 

protein; GAP-43, growth associated protein-43; SYN, synaptophysin; PND, postnatal 

day. Scale bars = 25pm. 
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Figure 13: Double labeled confocal images of olfactory marker protein (OMP), growth 

associated protein (GAP-43), and synaptophysin (SYN) immunoreactivity in the rat 

olfactory bulb at postnatal days 1 (A,B,C), 6 (D,E,F), 12 (G,H,I), and 18 (J,K,L). A: 

GAP-43 staining (red) is particularly prominent in the nerve layer with fewer OMP 

immunoreactive processes (green), evident at this age. Within glomeruli, OMP"" 

processes (e.g. arrow) appear more distinct around the periphery, while GAP-43'^ 

processes appear to be distributed more densely within the core of the glomerulus. There 

is some evidence of colocalization (yellow) in the glomerular layer. B: OMP (green) is 

strongest in the nerve layer (e.g. arrow) with no evidence of synaptophysin 

immunoreactivity (red) or colocalization (yellow). Within glomeruli, however, 

colocalization is abundant. Areas of colocalization (e.g. arrowhead) interdigitate with 

puncta of OMP and synaptophysin staining as well as unstained areas throughout the 

glomerulus. C: GAP-43 only (red) is distinct in the nerve layer with no evidence of 

synaptophysin staining (green). Within the glomerular neuropil puncta of single labeling 

for synaptophysin and GAP-43 are evident, with some evidence of colocalization 

(yellow). D: Areas of OMP immunoreactivity (green), GAP-43 immunoreactivity (red), 

and colocalization or overlap (yellow) are evident in the nerve layer. Within glomeruli, 

GAP-43 staining and areas of colocalization with OMP are found in the central portions. 

However, in the circumferential regions of the glomerulus GAP-43 staining is largely 

absent while OMP staining is prominent. E: The nerve layer appears exclusively 

immunoreactive for OMP only (green). Colocalization with synaptophysin (yellow) is 

extensively distributed throughout the glomerular neuropil, where large areas of 

colocalization (e.g. arrowhead) interdigitate with puncta of OMP staining (e.g. arrow). 
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synaptophysin staining (e.g. double arrowheads), as well as unstained areas . F: GAP-43 

immunoreactivity (red) is the predominate phenotype in the nerve layer. Within 

glomeruli GAP-43 staining is more evident in the central and more superficial, proximal 

to the nerve layer, regions of the glomerulus. Synaptophysin immunoreactivity (green) 

exhibits a punctate appearance within the glomerular neuropil, where little evidence of 

colocalization (yellow) with GAP-43 is seen. G: An arrow indicates a GAP-43"^ process 

(red) which is traveling through the nerve layer to target a glomerulus. The core of the 

glomerulus is occupied primarily by OMP'" processes (green) (e.g. arrowhead), although 

puncta of GAP-43 staining (e.g. double arrowhead) can also be detected. In contrast with 

the pattern of staining seen at earlier ages, colocalization appears most distinct in the 

periphery or rim of the glomerulus. H: OMP immunoreactive processes (green), 

indicated by an arrow, are prominent in the nerve layer. Within glomeruli, colocalization 

of OMP and synaptophysin occurs extensively. Areas of colocalization appear to rest 

within islands of OMP staining, while punctate areas of synaptophysin staining (e.g. 

double arrowhead) are evident within glomeruli as well. I: Colocalization (yellow) of 

GAP-43 (red) and synaptophysin (green) staining is most distinct at the base, proximal to 

the nerve layer, and in the periphery of the glomerulus. Synaptophysin 

immunoreactivity, however, is more robust in the central region of the glomerulus, while 

GAP-43 immunoreactivity is more apparent in the periphery and superficial areas, 

proximal to the nerve layer. J: Areas of OMP immunoreactivity (green) (e.g. arrow), 

GAP-43 immunoreactivity (red), as well as colocalization or overlap (yellow), are 

evident within the nerve layer, reflecting various stages of axon maturity. Within 

glomeruli, GAP-43 staining (e.g. double arrowheads) is more apparent in the periphery of 
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the glomerulus, while OMP staining (e.g. arrowhead) remains more distinct in the core of 

the glomerulus. K: The nerve layer is predominately immunoreactive for OMP alone 

(green). The glomerular neuropil is largely occupied by extensive areas of OMP and 

synaptophysin colocalization (yellow) (e.g. arrow). These areas of colocalization within 

glomeruli are interspersed with discrete puncta of synaptophysin immunoreactivity (red) 

(e.g. double arrowhead) as well as OMP immunoreactivity (e.g. arrowhead). L: GAP-43 

immunoreactivity is the predominate phenotype within the nerve layer, with little 

evidence of synaptophysin immunoreactivity (green) or colocalization (yellow). 

Colocalization within glomeruli is minimal compared with that seen in OMP and 

synaptophysin. GAP-43 staining is strongest in the periphery of the glomerulus, while 

synaptophysin staining is more robust in the core. ONL, olfactory nerve layer; GLL, 

glomerular layer; EPL, external plexiform layer; OMP, olfactory marker protein; GAP- 

43, growth associated protein-43; SYN, synaptophysin; PND, postnatal day. Scale bars = 

25jj,m. 
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Postnatal Day 1 

OMP 

At postnatal day 1, OMP immunoreactive processes were evident in the olfactory 

nerve and glomerular layers (Figure 9A and B). In general, the immunoreactive 

processes in the nerve layer appeared relatively short and discontinuous, particularly in 

contrast to the patterns of staining described at older ages. The OMP^ processes within 

the olfactory nerve layer did not appear as well-delineated axonal fascicles. Although in 

some cases the continuity with the glomerular layer could be detected (Figure 9B, arrow), 

it was less robust than seen at older ages. Rather, OMP^ processes were broadly 

dispersed throughout the nerve layer in a seemingly disorderly arrangement. Similarly, 

OMP immunoreactivity within glomeruli demonstrated a frayed, diffuse appearance, and 

was interspersed with punctate areas of non-immunoreactivity distributed 

heterogeneously throughout each glomerulus (Figure 9B, asterisk). There were OMP"" 

processes that appeared to extend beyond the inner boundaries of some glomeruli, 

towards the deeper regions of the olfactory bulb (Figure 9A, arrow). 

GAP-43 

GAP-43 immunoreactivity at postnatal day 1 demonstrated a more particulate 

quality as compared with the pattern of staining described below at older ages (Figure 9C 

and D). GAP-43 staining was dense in the olfactory nerve layer, although it was difficult 

to resolve single axons or discrete fascicles. The GAP-43 staining appeared punctate and 

did not reveal the longitudinal processes seen with OMP. Within glomeruli, GAP-43 
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immunoreactivity exhibited a diffuse and granular pattern of distribution which was 

interspersed with non-immunoreactive puncta throughout the glomerulus. In some 

glomeruli, GAP-43 staining exhibited a greater intensity proximal to the nerve layer 

(Figure 9C, arrow), while in others it appeared more evenly distributed. GAP-43 

immunoreactivity was absent from both the juxtaglomerular zone and the external 

plexiform layer. 

Synaptophysin 

In general, synaptophysin immunoreactivity at postnatal day I (Figure 9E and F) 

was comparable to that seen at older ages. Synaptophysin staining was absent from the 

olfactory nerve layer. Individual glomeruli, however, were readily resolved due to the 

presence of synaptophysin"" elements. Individual processes could not be resolved with 

the synaptophysin staining. The intraglomerular synaptophysin staining appeared 

punctate with interdigitating areas of higher and lower immunoreactivity as well as zones 

within which no immunoreactivity was evident. Although synaptophysin 

immunoreactivity was absent from the periglomerular zone, the external plexiform layer 

showed a pattern of punctate synaptophysin staining interspersed with areas of non- 

immunoreactivity. The synaptophysin immunoreactivity seen in the external plexiform 

layer is most likely associated with the presynaptic dendrites while the non- 

immunoreactive areas likely correspond to blood vessels. 

Double-Labeling 
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OMP/GAP-43 - Populations of GAP-43 immunoreactivity (shown in red) and 

OMP immunoreactivity (shown in green), as well as apparent areas of colocalization or 

overlap (shown in yellow) were present within the olfactory nerve layer (Figure 13A). 

However, at this age the predominant phenotype within the nerve layer was GAP-43"^. 

OMP'^ processes were evident as well, suggesting that some proportion of the axons at 

this age are exhibiting mature characteristics. While some co-localization of OMP and 

GAP-43 immunoreactivity is possible, these areas are more likely to represent axons (0.2 

pm in diameter) overlapping within the 1 pm optical sections. In the glomeruli, both 

OMP"^ and GAP-43'^ processes were evident; however, OMP staining was slightly more 

apparent along the periphery and outermost portions of the glomerulus (Figure 13 A, 

arrow), while GAP-43 staining appeared to remain within the more central areas of the 

glomerulus. 

OMP/Synaptophysin - The olfactory nerve layer appeared to be almost 

exclusively immunoreactive for OMP (green) (Figure 13B, arrow), with no evidence of 

synaptophysin immunoreactivity (red) or colocalization (yellow) within the nerve layer 

(Figure 13B). In contrast, colocalization (Figure 13B, arrowhead) was abundant within 

glomeruli. However, interdigitating among the areas of colocalization were puncta that 

were only OMP or synaptophysin immunoreactive. Although immunoreactivity was not 

evident in the juxtaglomerular zone, the external plexiform layer demonstrated the 

punctate synaptophysin staining described above (no co-localization; not illustrated). 

Synaptophysin!GAP-43- The olfactory nerve layer was strongly immunoreactive 

for GAP-43 but showed no evidence of labeling for synaptophysin (not illustrated; cf. 

Figure 9C and 9E). Within the glomerular neuropil punctate areas of synaptophysin 
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(green) and GAP-43 (red) immunoreactivity were evident (Figure 13C). However, the 

GAP-43 and synaptophysin showed comparatively little evidence of co-localization 

(yellow). The distribution of GAP-43 staining appeared slightly stronger proximal to the 

nerve layer and in the central portion of the glomerulus. In contrast, synaptophysin 

appeared more distinct in the circumferential region along the periphery of the 

glomerulus (Figure 13C, arrow). The juxtaglomerular zone did not show evidence of 

immunoreactivity. The external plexiform layer had no evidence of GAP-43^ processes 

and therefore no examples of co-localization with the punctate synaptophysin 

immunoreactivity described above (not illustrated). 

Postnatal Day 6 

OMP 

OMP staining in the olfactory nerve layer was very dense (Figure lOA and B). 

Fascicles as well as individual axons were seen traversing the nerve layer and targeting 

glomeruli (Figure lOA, arrow). Areas surrounding the fascicles devoid of OMP staining 

most likely represent the processes of ensheathing cells. OMP immunoreactivity within 

glomeruli was widely distributed, although less amorphous than that seen at postnatal day 

1. In particular, the fibrous appearance seen at postnatal day 1 has been replaced with a 

more adult-like appearance, although the well delineated islands or zones of OMP 

immunoreactivity have not yet emerged. This pattern of OMP immunoreactivity 

appeared consistent throughout the glomerulus. Also visible were discrete bundles or 

single OMP positive processes that appeared to extend beyond the deeper boundaries of 
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the maturing glomerulus. Some of these OMP^ processes appeared to emerge from the 

nerve layer to travel circuitously into a glomerulus (Figure lOB, arrow) and others 

appeared to protrude from a glomerulus to course distally, towards the external plexiform 

area (Figure lOB, arrowhead). OMP immunoreactivity was otherwise absent from the 

external plexiform layer as well as the periglomerular zone. 

GAP-43 

At postnatal day 6 (Figure IOC and D), the distribution of GAP-43 

immunoreactivity exhibited a pattern which closely resembled that seen at postnatal day 

1. In general, the staining exhibited a punctate appearance and was distributed in some 

cases along longitudinal processes. GAP-43’^ processes were abundant in the olfactory 

nerve layer, where fascicles of axons were seen targeting a glomerulus (Figure IOC, 

arrow). Within glomeruli, GAP-43 immunoreactivity appeared slightly more intense 

proximal to the nerve layer. Of note, the overall distribution of staining within glomeruli 

did not appear as zones of immunoreactivity interspersed with punctate areas of non- 

immunoreactivity as observed at the older ages described below, but instead 

demonstrated a more diffuse pattern of staining reminiscent of that seen at postnatal day 

1. The periglomerular zone and external plexiform layer were devoid of 

immunoreactivity. 

Synaptophysin 

As was noted for postnatal day 1, synaptophysin staining clearly demarcated the 

glomeruli, in part due to the absence of staining in the olfactory nerve layer and 
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periglomerular zone (Figure lOE and F). Within the glomerular layer however, staining 

was dense throughout the length of each glomerulus. A punctate pattern of 

synaptophysin immunoreactivity interspersed with areas of non-immunoreactivity was 

seen within glomeruli. Although what appeared to be single fibers could be followed, the 

overall impression was one of highly intense puncta throughout the glomerulus. 

Although the juxtaglomerular zone showed little immunoreactivity, the external 

plexiform layer demonstrated a punctate pattern of staining. Scattered areas of non- 

immunoreactivity likely represent blood vessels. 

Double Labeling 

OMP/GAP-43 - Areas of OMP immunoreactivity (green), GAP-43 

immunoreactivity (red), and co-localization (yellow) were evident within the olfactory 

nerve layer (Figure 13D). There appeared to be some heterogeneity however, since in 

some regions of the olfactory bulb OMP staining appeared more abundant than GAP-43 

while elsewhere in the olfactory bulb, OMP and GAP-43 staining appeared more evenly 

distributed (not illustrated). Within glomeruli, both OMP and GAP-43 immunoreactivity 

demonstrated patterns resembling those described above for each of the markers. Little 

or no co-localization was seen within the glomerular layer. In the periglomerular zone 

and external plexiform layer, we observed no evidence of OMP or GAP-43 

immunoreactivity. 

OMP/Synaptophysin - The olfactory nerve layer appeared to be immunoreactive 

for OMP only (green) with little, if any, evidence of synaptophysin (red), and no 

evidence of colocalization (yellow), as was noted previously at postnatal day 1 (Figure 
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13E). Within glomeruli, however, large areas of colocalization were apparent throughout 

the neruopil. Puncta of co-localization often appeared superimposed on areas of OMP 

only staining, giving the appearance of yellow/red dots on a green background. In 

addition, areas with no immunoreactivity and puncta of single labeling for synaptophysin 

(Figure 13E, double arrowhead) and OMP alone (Figure 13E, arrow) appeared to 

interdigitate with areas of co-localization (Figure 13E, arrowhead) within the glomerulus. 

This pattern of staining was consistent throughout the glomerulus. The juxtaglomerular 

zone was devoid of staining; however, the external plexifomi layer exhibited the complex 

distribution of synaptophysin immunoreactivity described for postnatal day 1 (not 

illustrated). 

GAP-43/Synaptophysin - In the olfactory nerve layer, although GAP-43 

immunoreactivity (red) was evident, no indication of co-localization was found since 

synaptophysin staining was not present in the nerve layer (see above) (Figure I3F). 

Within glomeruli the distribution of synaptophysin staining had a diffuse punctate 

appearance, as described above. Similarly, GAP-43 staining within glomeruli in these 

double label preparations was as described above. Co-localization of synaptophysin and 

GAP-43 was minimal in the glomerular neuropil. In those regions that did exhibit 

evidence of co-localization, it was most prominent in the portion of the glomerulus 

proximal to the nerve layer. While the periglomerular area was devoid of staining, the 

external plexiform layer showed the complex pattern of synaptophysin immunoreactivity 

described above, with no evidence of GAP-43 staining (not illustrated). 

Postnatal Day 12 
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OMP 

At postnatal day 12, the distribution of OMP immunoreactivity appeared similar 

to that previously described in the adult (Kasowski et ah, 1999). Staining was very dense 

in the olfactory nerve layer, where fascicles of axons coursed longitudinally and were 

seen exiting the nerve layer to enter olfactory bulb glomeruli (Figure 11A and B, arrows). 

Within the nerve layer, and particularly in fascicles targeting specific glomeruli (Figure 

IIB, arrow), elongated areas lacking immunoreactivity were seen interdigitating with the 

OMP immunoreactive processes. As noted above, these most likely represent the 

ensheathing cell processes that surround olfactory receptor cell axon fascicles. Within 

the glomeruli, contiguous islands of OMP immunoreactivity (Figure IIB, arrowhead) 

were interspersed with non-immunoreactive puncta (Figure IIB, asterisks). These were 

first seen at postnatal day 6, but became more distinctive by postnatal day 12. Staining 

for OMP was not apparent in the juxtaglomerular zone or in the external plexifonn layer. 

GAP-43 

The distribution of GAP-43 immunoreactivity was generally similar to that of 

OMP, although the appearance of immunoreactivity for GAP-43 was generally more 

granular and diffuse (Figure IIC and D). Staining was dense in the olfactory nerve layer, 

where axonal fascicles could be seen running parallel to the nerve layer and passing into 

glomeruli (Figure IIC, arrows). Within glomeruli, GAP-43 immunoreactivity (Figure 

1 ID, arrow) interspersed with discrete areas that were not immunoreactive (Figure 1 ID, 

asterisks). The islands of GAP-43 immunoreactivity, however, appeared less well 
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delineated that those seen with OMP, and the areas of staining within the islands had a 

more diffuse appearance (cf. Figure llA and IIC). GAP-43 immunoreactivity was not 

uniformly distributed throughout a glomerulus but appeared to exhibit a slightly greater 

intensity proximal to the nerve layer and along the outer rim and circumference of the 

glomerulus. There was no evidence of GAP-43 specific staining in the juxtaglomerular 

areas or in the external plexiform layer. 

Synaptophysin 

As we noted above for the younger animals, the olfactory nerve layer was 

generally devoid of synaptophysin immunoreactivity. Individual glomeruli, however, 

were readily demarcated by synaptophysin immunoreactivity (Figure 1 IE and F). In 

general, the synaptophysin staining was more diffuse than that seen with either OMP or 

GAP-43; synaptophysin staining was not restricted to the discrete zones or islands of 

contiguous staining seen with OMP and GAP-43. The punctate distribution of 

synaptophysin staining was not homogeneous throughout a glomerulus, rather staining 

appeared more dense around the periphery or rim of the glomerulus (Figure 1 IE, arrow). 

In the external plexiform layer a similarly distinct pattern of staining was evident (Eigure 

HE). Although synaptophysin immunoreactivity was densely distributed throughout the 

external plexiform layer, puncta of non-immunoreactivity were broadly spread 

throughout (Figure 1 IE, arrowhead). These areas of non-immunoreactivity broadly 

distributed in glomeruli and the external plexiform layer most likely represent, at least in 

part, blood vessels cut both longitudinally as well as transversely within the plane of the 

tissue. 
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Double Labeling 

OMP/GAP-43 - The occurrence of double labeling with markers for OMP and 

GAP-43 were comparable to the patterns described for each of the markers alone (Figure 

13G). The olfactory nerve layer exhibited immunoreactivity for OMP alone, GAP-43 

alone (Figure 13G, arrow), as well as areas of colocalization (not illustrated). The latter 

most likely reflects the superpositioning of the olfactory receptor cell axons, although it 

may be that in some cases both epitopes could occur within single axons during 

maturation. Throughout the olfactory nerve layer, these populations of immunoreactivity 

appeared in various combinations and densities, although all three phenotypes were 

generally present (not illustrated). The distribution of OMP"^ and GAP-43'^ processes 

within the glomerular neuropil appears fundamentally different from that seen at earlier 

ages. The core of the glomerulus appears immunoreactive predominately for OMP 

(green) (Figure 13G, arrowhead) although a few scattered GAP-43'^ (red) (Figure 13G, 

double arrowhead) processes can be detected. The region in which GAP-43 and OMP 

appear to overlap the most, however, is the periphery or rim of the glomerulus. This is in 

contrast with the pattern seen at younger ages in which the core of the glomerulus was 

predominately GAP-43'^ while the more mature OMP'" processes were found in the 

periphery of the glomerulus. Both the juxtaglomerular zone and external plexifoiTn area 

appeared to be devoid of immunoreactivity. 

OMP/Synaptophysin - Co-localization of OMP and synaptophysin occurred 

extensively within the glomerular neuropil (Figure 13H). These areas of colocalization 

appeared to rest within the islands of OMP immunoreactivity described above (Figure 
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13H, arrowhead). However, other areas within these islands showed immunoreactivity 

for OMP alone, while punctate processes immunoreactive for synaptophysin alone were 

found within the glomerulus as well (Figure 13H, double arrowhead). There was an 

absence of immunoreactivity in the juxtaglomerular zones, but the external plexiform 

layer exhibited the distinct pattern of synaptophysin immunoreactivity described above 

for the younger ages. 

GAP-43/Synaptophysin - Colocalization of GAP-43 and synaptophysin was 

evident throughout the glomerulus, but was predominate proximal to the nerve layer and 

in the periphery, as was the distribution of GAP-43 immunoreactivity within the 

glomerulus (Figure 131). Synaptophysin immunoreactivity, however, was more robust in 

the central region of the glomerulus. 

Postnatal Day 18 

OMP 

At postnatal day 18, OMP immunoreactivity was equivalent to that described for 

postnatal day 12, although it does appear that the density or number of stained processes 

may have increased (Figure 12A and B). Fascicles of axons were seen traveling both 

parallel and perpendicular to the layers of the olfactory bulb (Figure 12A). Within the 

olfactory nerve unstained areas appear as well. These may reflect the presence of 

immature axons (see GAP-43 below) or the ensheathing cell glia that contribute to the 

formation of axon fascicles. As the fascicles entered glomeruli the immunoreactivity 

appeared to diminish slightly, perhaps due to the defasciculation of the axons (Figure 
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12B, arrow). Within the glomeruli, the OMP immunoreactivity appeared broadly 

distributed within contiguous zones or islands that interdigitate with non-immunoreactive 

puncta of varying sizes (Figure 12B, asterisks). As we have previously shown, the latter 

most likely correspond to the dendritic and glial processes found within the glomeruli as 

well as transversely and longitudinally cut blood vessels (Kasowski et ak, 1999). In 

general, OMP immunoreactivity was qualitatively uniform across the population of 

olfactory bulb glomeruli. The juxtaglomerular zones were devoid of OMP 

immunoreactivity, as were the deeper layers of the olfactory bulb. 

GAP-43 

GAP-43 immunoreactivity (Figure 12C and D) had a distribution at postnatal day 

18 somewhat comparable to that of OMP. Staining was dense in the olfactory nerve layer 

where complexes of fascicles, as described above for OMP, were seen. As the fascicles 

enter glomeruli the immunoreactivity appeared to diminish significantly. Within the 

glomeruli, GAP-43 staining appeared similar to OMP in that contiguous subglomerular 

zones appeared more heavily stained, though they lack the sharp delineation seen with the 

OMP staining. Moreover, GAP-43 immunoreactivity was not consistent throughout the 

glomerulus, but appeared to exhibit a higher density proximal to the nerve layer and in 

the peripheral, circumferential regions of the glomerulus. In contrast to OMP, GAP-43 

immunoreactivity appeared variable across the population of glomeruli (Figure 12C, cf. 

Figure 13J). Although slight staining within juxtaglomerular areas was occasionally 

observed, it tended to be less than that seen in the nerve layer or glomeruli. 
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Synaptophysin 

Synaptophysin immunoreactivity was not found in the olfactory nerve layer 

(Figure 12E and F). In the glomerular layer, however, a dense reaction product was 

present throughout the glomeruli. The individual zones, seen so clearly with OMP, were 

absent although several puncta lacking immunoreactivity were found within the 

glomeruli (Figure 12E, arrow). These unstained puncta most likely correspond to blood 

vessels. The juxtaglomerular zone lacked any specific immunoreactivity for 

synaptophysin immunoreactivity but the deeper external plexiform layer exhibited a 

complex pattern of non-immunoreactive puncta broadly distributed within an otherwise 

intense area of synaptophysin immunoreactivity. 

Double-Labeling 

OMP/GAP-43 - Similar populations of immunoreactivity were seen in double- 

labeled images using markers for OMP and GAP-43: OMP only (green), GAP-43 only 

(red), and areas of colocalization/overlap (yellow) (Figure 13J). In the nerve layer, 

colocalization of OMP and GAP-43 is most likely due to the superpositioning of axons. 

Areas of superpositioning of GAP-43'" and OMP"^ processes in the nerve layer were 

interspersed throughout with single labeling for OMP (Figure I3J, arrow) and GAP-43, 

whose distributions appeared heterogeneous across different regions of the nerve layer. 

These differences in OMP and GAP-43 immunoreactivity at different regions in the bulb 

may reflect general variations in axon maturity in any given area within the nerve layer. 

Colocalization in the glomerulus remained dense proximal to the nerve layer and 

appeared to decrease as fascicles enter the glomeruli. Within glomeruli, staining for both 
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OMP and GAP-43 was apparent throughout the glomerulus, although OMP 

immunoreactivity (Figure 13J, arrowhead) appeared more concentrated in the center/core 

of the glomerulus while GAP-43 (Figure 13J, double arrowheads) appeared more 

concentrated in the periphery of the glomerulus. This was consistent with observations 

made of single labeling, described above as well as the pattern that had begun to emerge 

at postnatal day 12. The juxtaglomerular zone and external plexiform area appeared 

devoid of immunoreactivity (not illustrated). 

OMP/Synaptophysin - Three populations of immunoreactivity were evident in 

sections double-labeled with markers for OMP and synaptophysin: OMP staining alone 

(green), synaptophysin alone (red), and regions of colocalization (shown in yellow) 

(Figure 13K). The nerve layer expressed OMP alone; there was no evidence of 

synaptophysin in the nerve layer. Within glomeruli, however, large areas of 

colocalization were found throughout a glomerulus (Figure 13K, arrow). These regions 

of colocalization were punctate in appearance and resided within the islands of OMP- 

positive processes. Areas of colocalization were interspersed with discrete puncta of 

OMP (Figure 13K, arrowhead) and synaptophysin (Figure 13K, double arrowhead) 

immunoreactivity, and the density of colocalization seemed consistent throughout a 

glomerulus. The juxtaglomerular zone lacked any immunoreactivity, but the external 

plexiform layer showed the complex pattern of synaptophysin staining described for 

earlier ages, and appeared to be devoid of both OMP-positive processes and 

colocalization (not illustrated). 

GAP-43/Synaptophysin - The distribution of double labeling for GAP-43 (red) 

and synaptophysin (green) was consistent with the patterns described above for the two 
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markers alone at postnatal day 18 (Figure 13L). GAP-43 immunoreactive processes were 

evident in the nerve layer, from which synaptophysin appeared to be entirely absent. 

Colocalization was evident within glomeruli, although markedly less than that seen with 

synaptophysin and OMP. Staining for synaptophysin alone was strongest in the core of 

the glomerulus while staining for GAP-43 alone appeared strongest in the periphery of 

the glomerulus. As noted previously, staining was absent from the juxtaglomerular zone, 

and no evidence of co-localization of these epitopes was found in the external plexiform 

layer. 
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Discussion 

The findings from the first study examining subcompartmental organization 

within olfactory bulb glomeruli in the adult will be discussed first, followed by those 

from the second study investigating subcompartmental organization during postnatal 

development. 

The major finding emerging from the first study is that the mammalian 

glomerulus is not a homogenous unit but can be divided into subcompartments which 

differ in their cellular and synaptic organization. The data contributing to this conclusion 

can be summarized as follows: 1) Within a glomerulus there are interdigitating 

subcompartments that are composed predominantly of either axons or dendrites. 2) Each 

subcompartment is further characterized by its synaptic connections. Primary afferent 

axodendritic synapses are found exclusively in axonal zones while dendrodendritic local 

circuit synapses are found primarily in dendritic subcompartments. 3) Analysis of the 

glomerular distribution of synaptic vesicle associated proteins was consistent with the 

suggestion that primary afferent and local synaptic circuits are segregated into 

subglomerular compartments. 

Characterization of Axonal and Dendritic Subcompartments 

Immunocytochemical analyses of OMP revealed the compartmental nature of 

subglomerular organization. Axonal areas, identified by dense OMP-IR, are found 

adjacent to areas devoid of OMP-IR. Double labeling for OMP and MAP2 demonstrated 
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that dendritic processes arborized predominately within the non-OMP areas thus 

revealing an interdigitating pattern of OMP-IR and MAP2-IR zones. 

EM reconstructions of glomeruli further demonstrated the segregation of axonal 

and dendritic compartments. Axonal areas tended to form semi-contiguous zones of 

electron dense processes that interdigitated with the electron lucent dendrites. Within the 

axonal areas single or small groups of dendritic processes, most likely from mitral/tufted 

and periglomerular cells, were diffusely distributed throughout the axonal zone. In 

contrast, dendritic areas were composed exclusively of dendrites without evidence of any 

axonal processes. Moreover, dendritic zones were often encapsulated, at least in part, by 

glial processes which segregated the dendritic and axonal compartments. The dendritic 

compartments included bundles of from 4-100-f dendrites. This contrasts with dendritic 

bundles previously described in cortex where only 10-20 dendrites traveled in closely 

apposed clusters (Roney et al., 1979). Moreover, no evidence of dendrodendritic 

synapses has been reported for cortical dendritic bundles. Dendritic versus axonal 

compartments were readily recognized at the ultrastructural level. While, as noted above, 

there was a continuum of size, the exclusion of ORC axons from the dendritic zone was a 

reliable index, as were the distribution of synapses (vide infra). 

Synaptic Characterization of the Glomerulus 

It has been generally held that intraglomerular synaptic organization is 

homogeneous (Pinching and Powell, 1971). However, our data reveal a segregation of 

primary afferent and local circuit synapses. Primary afferent axodendritic synapses were 

found where individual or small groups of dendrites penetrated into axonal 
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subcompartments and to a lesser extent along the interface between the axonal and 

dendritic subcompartments. Axodendritic synapses were not found within the dendritic 

compartments. In contrast, dendrodendritic synapses occurred predominately in dendritic 

subcompartments and were only rarely observed between dendrites in axonal 

subcompartments. 

The immunocytochemical analyses also suggested a heterogeneous distribution of 

synapses. Synaptophysin colocalized strongly with primary afferent axons in the axonal 

subcompartments while synapsin 1 appeared strongly associated with dendrites in the 

dendritic subcompartments. Earlier studies suggested that vesicle associated proteins 

may segregate across olfactory bulb synapses because synaptophysin and synapsin 2 

were heaviest in the glomeruli while synaptoporin and synapsin 1 were heaviest in the 

external plexiform layer (Bergmann et al., 1993; Stone et ah, 1994). Because the current 

study demonstrates that primary afferent synapses occur in the axonal compartment of the 

glomerulus while the dendrodendritic synapses occur in the dendritic compartment, it 

seems reasonable to suggest that synaptophysin is most strongly associated with the 

axodendritic synapse while synapsin 1 is most strongly associated with the 

dendrodendritic synapse. A differential synaptic localization of vesicle associated 

proteins has also been found previously in the retina (Mandell et al., 1990) and 

hippocampus (Zurmohle et al., 1994). 

While the specific mechanism that may underlie a differential distribution of 

vesicle associated proteins in the olfactory bulb is not yet known, it is provocative to note 

that the synaptology of the primary afferent and local circuit synapses of the olfactory 

bulb are distinct with regard to their collections of vesicles (Price, 1968). Primary 
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afferent synapses are characterized by a large collection of small spherical vesicles and a 

thick asymmetrical postsynaptic thickening. The dendrodendritic synapse from 

mitral/tufted to periglomerular dendrites is similarly organized but usually includes only 

a few (2-10) vesicles in the presynaptic compartment. The reciprocal dendrodendritic 

synapses from the periglomerular cell dendrite includes a larger collection of 

pleomorphic vesicles and a symmetrical postsynaptic thickening. Such differences seem 

likely to contribute to the differential distribution of vesicle associated proteins. 

We did not quantify the synaptic connections of the centrifugal axons which 

project in small numbers into the glomerulus (Shipley and Ennis, 1996) and most likely 

contribute, in part, to the unknown synapses in Figure 7. Chao et al. (1997), however, 

suggested that centrifugal axons may occur in the dendritic compartments of the 

glomerulus and indeed, have previously noted that choline acetyltransferase containing 

centrifugal axons appeared to be restricted from areas within glomeruli that contained 

high numbers of primary afferent axons (Kasa et al., 1995). Because centrifugal axons 

are, by definition, modulatory in nature, it seems plausible that they would terminate 

proximal to local circuit dendrodendritic synapses in the dendritic compartments of 

glomeruli. However, in the absence of a centrifugal-specific marker, it would have been 

difficult in our analyses to establish the frequency or distribution of this relatively small 

population of axons (Le Jeune and Jourdan, 1993; Kasa et al., 1995). 

The diameters of dendritic processes receiving axodendritic synapses were 

significantly smaller than those receiving dendrodendritic synapses. This suggests a 

laminar segregation of synapses with respect to the glomerular dendritic arbor of mitral 

and tufted cells. The thicker, more proximal portions of the dendritic shaft may be 
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clustered with other dendrites in the dendritic subcompartments and participate in 

dendrodendritic synapses. The finer, more distal, processes might then penetrate into the 

axonal subcompartments to receive axodendritic synapses. Such an organization would 

maximize inhibitory local circuit regulation of the ORC input to dendrites and further, 

would be consistent with the segregation of excitatory and inhibitory synapses onto 

cortical neurons (i.e. Beaulieu and Collonier, 1985). Finally, the separation of 

axodendritic and dendrodendritic synapses appears to be a prudent organizational scheme 

for the glomerulus, in part, because both the ORC axons and the mitral cells use 

glutamate as a neurotransmitter (Berkowicz et al., 1994; Ennis et al., 1996; Trombley and 

Shepherd, 1993). Segregation of the synaptic circuits may thus be important in order to 

minimize non-specific effects due to the diffusion of neurotransmitter. 

The quantitative distribution of axo- and dendrodendritic synapses in the 

glomerulus was consistent with prior reports in that the former was more frequent than 

the latter (Hinds and Hinds, 1976; White, 1973). Unexpectedly, however, symmetrical 

periglomerular to mitral/tufted cell synapses occurred at a ratio of 2:1 relative to the 

reciprocal mitral/tufted to periglomerular synapses. White (1973) previously reported 

that mitral/tufted to periglomerular and the reciprocal periglomerular to mitral/tufted 

dendrodendritic synapses occurred in roughly equal numbers, although a breakdown of 

frequency was not reported. More consistent with our cuiTent findings. Hinds and Hinds 

(1976) reported that the mitral/tufted to granule and/or periglomerular dendrodendritic 

synapse was predominant by a ratio of 2.8:1 through postnatal day 44 in mice. These 

data suggest that the ratios of the glomerular dendrodendritic circuits may differ 

somewhat from those more fully characterized in the external plexiform layer of the 
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Figure 14: Summary model of the possible organization in the mammalian glomerulus. 

Axon fascicles 1 and 2 enter the glomerulus, defasciculate and distribute into smaller 

axonal subcompartments which interdigitate with dendritic subcompartments. Within the 

axonal subcompartments the axons make primary afferent synapses with isolated or small 

groups of dendrites from mitral, tufted and periglomerular cells. Dendrodendritic 

synapses are rarely seen in the axonal areas. Dendritic subcompartments contain bundles 

of dendrites that are encompassed by glial processes (thick gray line). In dendritic 

subcompartments, dendrites are closely apposed and establish dendrodendritic synaptic 

circuits. Axodendritic synapses were not seen in the dendritic compartments. Thus, 

primary afferent axodendritic and local circuit dendrodendritic synapses are separated 

within the glomerulus. The insets illustrate the types of synaptic specializations found 

within the axonal and dendritic subcompartments of the glomerulus. Axodendritic 

synapses are characterized by a high density of uniform spherical synaptic vesicles and 

are presynaptic to an asymmetrical membrane thickening on mitral/tufted and 

periglomerular cells. Mitral/tufted cells have uniform small, round vesicles that are 

presynaptic to an asymmetrical membrane thickening, a Gray Type 1 synapse. The 

periglomerular cells have more numerous pleomorphic vesicles that are round or oval and 

are generally larger than those seen in the mitral/tufted cells. The periglomerular 

dendrites are presynaptic to a symmetrical membrane thickening, a Gray Type 2 synapse. 

Abbreviations: AF, axon fascicle; Axon term., olfactory receptor cell axon terminal; Den, 

dendritic subcompartment; PG, periglomerular cell; MT, mitral or tufted cell. 
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olfactory bulb (Price and Powell, 1970) and that further analyses of serially sectioned 

glomerular dendrites would be appropriate. 

Hinds (1970) reported the presence of synaptic triads in the olfactory bulb 

glomerulus. Axodendritic synapses onto dendrites that were also engaged in 

reciprocal/serial dendrodendritic synapses were apparent in single electron micrographs. 

White (1973) similarly suggested the presence of such triads, although no examples were 

provided. Clear evidence for these complex serial synaptic arrangements was not seen in 

the current study. However, among the rare dendrodendritic synapses occurring within 

the axonal zones, as well as those axodendritic synapses found at the interface of the 

axonal and dendritic compartments, there is clearly the potential for such synaptic 

arrangements to occur. However, our analysis of the data suggest that while a single 

dendrite could be involved in serial and/or reciprocal synaptic circuits, each of the 

synapses is likely to be separated from each other and would not appear in the side-by- 

side arrangement characteristic of the dendrodendritic synapses in the external plexiform 

layer (Price and Powell, 1970; Greer and Halasz, 1987.) 

Model and Functional Implications 

Based on our interpretation of the data, organization in the mammalian 

glomerulus may be summarized as shown in Figure 14. As ORC axons enter the 

glomerulus they defasciculate, arborize and distribute in large contiguous zones. Within 

the axonal zones the most terminal portions of dendritic processes receive axodendritic 

synapses from the ORC axons. Dendritic processes exhibit a far more complex 

distribution. A single dendrite, upon entering the glomerulus, may pass through both 



4 

• *t, (♦lU 

Vr^ 

'V ' WiUiK'lfi klSBlj^^ 

•■ifiv*’ • ’• 

'•c :>iMm 

■:■ "•’ ■■,.^1^1* 



84 

axonal and dendritic compartments. The dendritic compartment, containing 4-100 tightly 

apposed dendrites, is demarcated from the axonal compartment, in part, by a surrounding 

glia process. In addition, the dendritic compartment is distinguished by the presence of 

numerous dendrodendritic synapses. While dendrodendritic synapses were seen in the 

axonal zone, they were rare. Axodendritic synapses were not observed with dendritic 

zones. Thus, while a dendrite can pass through both zones and receive both axo- and 

dendrodendritic synapses, the spatial distribution of those synapses is defined by the 

subglomerular compartment. 

It has been recognized for some time that glomeruli in insects and crustaceans can 

be regionally subdivided based on cytological and neurochemical differences. Schmidt 

and Ache (1992) showed that cap/subcap regions of glomeruli are morphologically 

distinct and innervated by different classes of intemeurons in the antennal lobe of the 

spiny lobster. Recently they also identified additional intraglomerular layers using 

immunoreactivity to antibodies against several neurotransmitters (Schmidt and Ache, 

1997). Such regionalization has been similarly demonstrated in the moth, Mandiica 

sexta, and in the cockroach, Periplaneta americana (Boeckh and Tolbert, 1993; Hansson 

et al., 1991). 

The heterogeneity found in insects and lobsters was not thought to be present in 

single vertebrate glomeruli until recently. Kosaka et al. (1997) and Toida et al. (1998) 

identified subgroups of immunoreactive processes in the glomerulus in the rat and 

suggested prominent differences in the distribution of periglomerular cell dendrites and 

ORC axons within glomeruli. Chao et al. (1997) also recognized a heterogeneous 

organization of glial cells within single glomeruli. They observed that glial cells were 
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restricted to dendritic compartments and were excluded from a separate compartment 

which contained primarily ORC axons. Consistent with our findings, the glial cells were 

seen to form a partial border between compartments. Our findings extend these previous 

studies by showing: 1) that clusters of dendrites and contiguous fields of ORC terminals 

establish well defined subcompartments within the glomerulus; and, 2) that synaptic 

vesicle associated proteins and categories of synapses are differentially distributed in the 

dendritic and ORC terminal compartments within single glomeruli. Collectively, these 

data support the hypothesis that information processing is regionally subdivided within 

the mammalian glomerulus. 

The most important findings to emerge from the second study include: 1) The 

emergence of a mature or adult-like subcompartmental organization within the 

glomerulus by 12 days postnatal; 2) a temporal-spatial pattern of axonal maturation 

within the glomerulus with the most immature axons initially found in the core while 

later in development, they occupy more peripheral regions; 3) The strong colocalization 

of OMP and synaptophysin in contrast with less frequent colocalization of synaptophysin 

and GAP-43. Each of these findings will be discussed, in turn, below. 

GAP-43 and OMP proved to be effective markers of immature and mature, 

respectively, olfactory receptor cell axons. Although GAP-43 is a membrane constituent 

and OMP a cytoplasmic protein, because olfactory receptor cell axons average 0.2p.m in 

diameter and because we used l.Opm optical images to assess the data, this difference in 

subcellular localization seems unlikely to have biased the data. Similarly, although the 
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presence of GAP-43 in other processes including juxtaglomerular cells and centrifugal 

axons had the potential to influence our interpretation of the data, this seems unlikely for 

the following reasons. First, the majority of GAP-43 staining in the developing 

glomerular layer occurs within the glomerular neuropil (cf. Figs. 9-12) where growing 

olfactory receptor cell axons continue to arrive. There was little evidence of GAP-43 

staining in the juxtaglomerular zone in either the current or previous reports (Treloar et 

al., 1999; Bailey et ah, 1999; Verhaagen et ah, 1989). Second, expression by either 

developing centrifugal axons or juxtaglomerular processes is transient and diminish as 

they mature over a relatively narrow timeframe (Bayer, 1983). Thus, while we cannot 

rule out that some GAP-43 staining not associated with olfactory receptor cell axons 

would be found in the early postnatal period, it seems unlikely that it would confound our 

interpretation of the data. 

Subcompartmental Organization of the Glomerulus 

Prior studies established that the adult glomerulus exhibits a complex 

subcompartmental organization in which the axodendritic synapses made by olfactory 

receptor cell axons and the local circuit dendrodendritic synapses made by efferent 

dendrites are spatially segregated within the glomerulus (Chao et al., 1997; Kasowski et 

al., 1999). At the earliest ages tested in this study, 1 and 6 days postnatal, there was no 

evidence of a differential distribution of olfactory receptor cell axons within the 

glomerulus. Rather OMP^ and GAP-43'^ processes appeared homogeneously distributed 

throughout the glomerulus. The initial appearance of an adult-like pattern of distinct 

islands of OMP"" processes was at 12 days postnatal with further refinement of 

immunoreactive and non-immunoreactive zones by 18 days postnatal. These results are 
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consistent with the results of Malun and Brunjes (1996) who showed that prior to 10 days 

postnatal, the glomerular arbors of mitral cell apical dendrites exhibited variable degrees 

of differentiation. Indeed, at postnatal day 4 examples of mitral cells with multiple apical 

dendrites and sparsely developed glomerular tufts were illustrated (Malun and Brunjes, 

1996). These observations suggest the possibility that the subcompartmental 

organization of the glomerulus emerges as the dendritic arbors mature and segregate into 

the dendritic bundles that then interdigitate among the islands of olfactory receptor cell 

axons within the glomerulus. Also consistent with this interpretation are the 

developmental studies of Hinds and Hinds (1976a,b) who showed that axodendritic 

synaptic circuits emerge initially in the glomerulus with a later appearance and 

maturation of dendrodendritic circuits. Indeed, the frequency of axodendritic synapses in 

the perinatal period exceeds that of dendrodendritic synapses by at least an order of 

magnitude. Consequently, it seems reasonable to suggest that the synaptophysin staining 

we observed at postnatal days 1 and 6 is most likely accounted for largely by the 

terminals of olfactory receptor cell axons. However, as the animals mature, the density 

or frequency of both axodendritic and dendrodendritic synapses within the glomerulus 

asymptotes around 10 - 12 days postnatal in the mouse. This appears consistent with the 

maturation of glomerular organization around 12 days postnatal. The colocalization of 

OMP and synaptohphysin staining interdigitating with smaller islands of synaptophysin 

alone staining is indicative of the segregation of the axo- and dendrodendritic circuits 

into separate compartments. Finally, this pattern of maturation is reminiscent of that 

reported by Oland et al. (1990) in the moth; initially protoglomeruli in the antennal lobe 
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reflect largely the distribution of primary afferent axons, the target dendritic processes do 

not organize into glomerular structures until around midstage 6. 

Maturation of functional measures in the olfactory bulb follows a timecourse 

similar to that reported here. Using 2-deoxyglucose, both Greer et al. (1982) as well as 

Astic and Saucier (1982) reported that while individual glomeruli could be detected 

following odor stimulation at younger ages, the definitive patterns characteristic the adult 

did not appear until around postnatal day 12. Similarly, Meisami and Sendera (1993) 

using cytochrome oxidase staining, reported increases in both the number and size of 

glomeruli that appear to correspond well to the data reported here. Glomeruli more than 

doubled in diameter between postnatal days 1 and 25 while the total number of glomeruli 

in the bulb had stabilized by 3 days postnatal. Our data now suggest that while glomeruli 

may continue to increase in diameter, most likely due to the addition of new primary 

afferents as well as juxtaglomerular dendrites, the compartmental organization is 

established by 12 days. Further growth of individual glomeruli after 12 days postnatal 

most likely reflects the elaboration of the established adult pattern. 

Maturation Within the Glomerular Neuropil 

Little is known about the spatio-temporal sequences of maturation within a 

glomerulus. Our prior studies of the embryonic rat olfactory bulb demonstrated that 

immature axons arrived first in the core of a glomerulus and were then displaced to the 

periphery during ensuing maturation (Treloar et al., 1999). Our current data demonstrate 

that this pattern of development continues through postnatal day 6. However, by 

postnatal day 12 the pattern inverts; the immature fibers, visualized as GAP-43'' 

processes, now define the outermost periphery of the glomerulus. It is notable that this 
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pattern of maturation is also reflected in the synaptophysin staining which tends to appear 

heaviest in the periphery of the glomerulus. A similar pattern of synaptophysin staining 

is also noted in the adult (Stone et al., 1994; Johnson et al., 1996). These data suggest 

that the initial formation of the glomerulus is likely to incorporate a scheme in which the 

most immature axons move toward the periphery as they mature, and the glomerulus 

grows. However, when a glomerulus becomes adult-like or mature, axons appear to enter 

only after coursing around the periphery of the glomerulus. This may lead, in the adult, 

to an initially heavier concentration of both mature and immature axons in the periphery 

of the glomerulus. Some support for this suggestion may be found in Johnson et al. 

(1996) who reported that concentrations of synaptophysin immunoreactivity were 

heaviest in glomeruli where they were proximal to the olfactory nerve layer. In a related 

context, Halasz and Greer (1993) and Klenoff and Greer (1998) both presented evidence 

of accumulations of axons in the periphery of glomeruli. Verhaagen et al. (1989) also 

reported heavy accumulations of GAP-43 immunoreactivity around the perimeter of 

glomeruli in the adult. Similarly, Holtmaat et al. (1997) showed that following over¬ 

expression of GAP-43, olfactory receptor cell axons distributed preferentially in the 

periphery of the glomerulus. The mechanism that may mediate this change in the 

approach of axons to glomeruli in adults versus neonates remains to be established. 

However, it may reflect alterations in the distribution and the molecular properties of the 

astroglia cells that both surround and invade the neuropil of glomeruli (Chiu and Greer, 

1996; Bailey and Shipley, 1993; Gonzalez et al., 1993; Kasowski et al., 1999). 
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Synaptophysin Localization 

There is a general consensus that olfactory receptor cell axons lose the GAP-43 

phenotype as they mature and begin to express OMP (Verhaagen et ah, 1989). We 

previously reported that in the embryo synaptophysin was lightly expressed in olfactory 

nerve when it abuts the presumptive olfactory bulb at embryonic day 17, prior to a robust 

expression of OMP (Treloar et ah, 1999). The current data are consistent in that they too 

suggest only slight co-localization of synaptophysin and GAP-43. Rather, synaptophysin 

appears most consistently co-localized with OMP expression. This simple observation is 

consistent with the notion that OMP expression is associated with more mature axons that 

have established synaptic appositions within the glomeruli. Interestingly, at the youngest 

ages we examined it was difficult to dissociate the OMP and synaptophysin co¬ 

localization. It was not until postnatal day 12 that a more adult like pattern emerged in 

which puncta of synaptophysin staining alone interdigitated with the islands of co¬ 

localized OMP and synaptophysin. Johnson et al. (1996) present similar findings in that 

their synaptophysin staining of glomeruli was more homogeneous at perinatal ages than 

in older animals. As has been shown in the adult, synaptophysin localization is not 

limited to the axodendritic synapses in the olfactory bulb; synaptophysin 

immunoreactivity is also found in the glomerular reciprocal dendrodendritic synapses 

(Kasowski et al., 1999; Stone et al., 1994). Consequently, the most plausible explanation 

for the findings in the current study is the emergence of the nascent dendritic bundles and 

their dendrodendritic synaptic circuits. 
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Summary 

In conclusion, the data presented demonstrate that the compartmental organization 

of olfactory receptor cell axons within glomeruli emerges slowly over the first 12 

postnatal days. Compartmentalization appears to increase in concert with the 

upregulation of the OMP phenotype and downregulation of the GAP-43 phenotype. The 

appearance of puncta of synaptophysin staining, interdigitating with islands in which 

OMP and synaptophysin colocalized, heralded the emergence of the dendritic bundles 

within the glomeruli. 
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Figures 

Page 

Figure 1: An overview of the anatomy of the olfactory system.3 

Figure 2: Basic synaptic circuitry of the olfactory bulb.7 

Figure 3: Confocal images, reconstructed from serial optical planes, of OMP, MAP2, 
synaptophysin, or synapsin 1 immunoreactivity in the superficial layers of the 

olfactory bulb.27 

Figure 4; Confocal images, reconstructed from serial optical planes, of combinations of 
OMP, MAP2, GFAP, synaptophysin, and synapsin 1 immunoreactivity.29 

Figure 5: A glomerulus in cross section constructed from a montage of electron 

micrographs.35 

Figure 6: High magnification electron micrographs of the rat olfactory bulb 

glomerulus.38 

Figure 7: The frequency of axo- and dendrodendritic synapses per 40pm“ in the rat 

glomerulus.42 

Figure 8: Light micrographs of cresyl violet stained sections of the rat olfactory bulb at 

postnatal days 0, 6, 12, and 18.48 

Figure 9: Confocal micrographs of olfactory marker protein (OMP), growth associated 
protein GAP-43, and synaptophysin immunoreactivity in the superficial layers 

of the rat olfactory bulb at postnatal day 1.50 

Figure 10: Confocal micrograph of olfactory marker protein (OMP), growth associated 
protein GAP-43, and synaptophysin immunoreactivity in the superficial layers of 

the rat olfactory bulb at postnatal day 6.52 

Figure 11: Confocal micrograph of olfactory marker protein (OMP), growth associated 
protein GAP-43, and synaptophysin immunoreactivity in the rat olfactory bulb at 
postnatal day 12.54 

Figure 12: Confocal micrograph of olfactory marker protein (OMP), growth associated 

protein GAP-43, and synaptophysin immunoreactivity in the rat olfactory bulb at 
postnatal day 18.56 
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Figure 13: Double labeled confocal images of olfactory marker protein (OMP), growth 
associated protein GAP-43, and synaptophysin immunoreactivity in the rat 

olfactory bulb at postnatal days 1,6, 12, and 18.60 

Figure 14: Summary model of the possible organization in the mammalian 
glomerulus.82 
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