39 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A Rapid Detection Method for Microorganisms in Food

    No full text
    The objective of our research is to develop a method for rapid detection of microorganism in food. Polydiacetylenes (PDAs) are unique materials which can change color from blue to red in response to stimulation. This property gives PDA the potential for rapid detection of bacteria, viruses or other food contaminants. We’ve determined how common food sanitizers react with PDAs to identify potential false positive results. We’ve successfully made solid-based PDA platform and have tested on E. coli. Obvious color change from blue to pink was observed after culturing. We continue to work on improving the sensitivity of the platform and applying PDAs in real food production environments

    Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane

    No full text
    Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated

    Polydiacetylene sensor interaction with food sanitizers and surfactants

    No full text
    Polydiacetylene (PDA) vesicles are of interest as biosensors, particularly for pathogenic bacteria. As part of a food monitoring system, interaction with food sanitizers/surfactants was investigated. PDA vesicles were prepared by inkjet-printing, photopolymerized and characterized by dynamic light scattering (DLS) and UV/Vis spectroscopy. The optical response of PDA vesicles at various concentrations verses a fixed sanitizer/surfactant concentration was determined using a two variable factorial design. Sanitizer/surfactant response at various concentrations over time was also measured. Results indicated that only Vigilquat and TritonX-100 interacted with PDA vesicles giving visible colour change out of 8 sanitizers/surfactants tested. PDA vesicle concentration, sanitizer/surfactant concentration, and time all had a significant (P < 0.0001) effect on colour change. As they are highly sensitive to the presence of Vigilquat and TritonX-100, PDA sensors could be used to detect chemical residues as well as for detection of various contaminants in the food industry

    Polydiacetylene sensor interaction with food sanitizers and surfactants

    No full text
    Polydiacetylene (PDA) vesicles are of interest as biosensors, particularly for pathogenic bacteria. As part of a food monitoring system, interaction with food sanitizers/surfactants was investigated. PDA vesicles were prepared by inkjet-printing, photopolymerized and characterized by dynamic light scattering (DLS) and UV/Vis spectroscopy. The optical response of PDA vesicles at various concentrations verses a fixed sanitizer/surfactant concentration was determined using a two variable factorial design. Sanitizer/surfactant response at various concentrations over time was also measured. Results indicated that only Vigilquat and TritonX-100 interacted with PDA vesicles giving visible colour change out of 8 sanitizers/surfactants tested. PDA vesicle concentration, sanitizer/surfactant concentration, and time all had a significant (P \u3c 0.0001) effect on colour change. As they are highly sensitive to the presence of Vigilquat and TritonX-100, PDA sensors could be used to detect chemical residues as well as for detection of various contaminants in the food industry
    corecore