32 research outputs found

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    A novel spin-label for study of membrane protein rotational diffusion using saturation transfer electron spin resonance. Application to selectively labelled class I and class II-SH groups of the shark rectal gland Na+/K+-ATPase.

    No full text
    Na+/K+-ATPase in membranous preparations from the rectal gland of Squalus acanthias has been spin-labelled either on Class I -SH groups, which maintain overall ATPase activity, or on Class II -SH groups, for which only phosphorylation activity is preserved. Labelling of the Class I groups requires solubilization of the membranes and subsequent reconstitution by precipitation with Mn2+ in order to remove contaminating peripheral proteins, which are also labelled. Control experiments with preparations in which the Class II groups are labelled demonstrate that the mobility and aggregation state of the enzyme in the reconstituted membranes are similar to those in the native membrane. Both the conventional maleimide nitroxide derivative and a new benzoylvinyl nitroxide derivative have been used for the labelling. The segmental mobility of the labels and the overall rotational diffusion of the labelled protein have been investigated using saturation transfer ESR spectroscopy. The benzoylvinyl spin-label derivative offers particular advantages for the study of the protein rotational mobility in that the segmental mobility is considerably reduced relative to that observed with the maleimide derivative. This is especially the case for the Class I groups, where the maleimide label exhibits pronounced segmental mobility. Comparison of the results from the two labels indicates that the integral of the saturation-transfer spectrum is much more sensitive to segmental motion than are the diagnostic lineheight ratios. This fact allows a better level of discrimination between the two types of motion. The results from the benzoylvinyl nitroxide-labelled Class I groups suggest that the Na+/K+-ATPase is probably present as an (αβ)2-diprotomer (or higher oligomer) in the native membrane

    Saturation transfer electron spin resonance of Ca2(+)-ATPase covalently spin-labeled with beta-substituted vinyl ketone- and maleimide-nitroxide derivatives. Effects of segmental motion and labeling levels.

    Get PDF
    The Ca2(+)-ATPase in native sarcoplasmic reticulum membranes was selectively spin-labeled for saturation transfer electron spin resonance (ESR) studies by prelabeling with N-ethylmaleimide and by using low label/protein ratios. Results with the nitroxide derivative of the standard sulphydryl-modifying reagent, maleimide, were compared with a series of six novel nitroxide beta-substituted vinyl aryl ketone derivatives which differed (with two exceptions) in the substituent at the ketone position. The two exceptions had a different electron withdrawing group at the alpha-carbon, to enhance further the electrophilic character of the beta-carbon. Although differing in their reactivity, all the conjugated unsaturated ketone nitroxide derivatives displayed saturation transfer ESR spectra indicative of much slower motion than did the maleimide derivative. The saturation transfer ESR spectra of maleimide-labeled Ca2(+)-ATPase therefore most likely contain substantial contributions from segmental motion of the labeled group. The effects of the level of spin labeling were also investigated. With increasing degree of spin label incorporation, the linewidths of the conventional ESR spectrum progressively increased and the intensity of the saturation transfer spectrum dropped dramatically, as a result of increasing spin-spin interactions. The hyperfine splittings of the conventional spectrum and the outer lineheight ratios of the saturation transfer spectrum remained relatively unchanged. Extrapolation back to zero labeling level yielded comparable values for the effective rotational correlation times deduced from the saturation transfer spectrum intensities and from the lineheight ratios, for the vinyl ketone label. For the maleimide label the extrapolated values from the integral are significantly lower than those from the lineheight ratios, probably because of the segmental motion. Comparison is made of the effective rotational correlation time for the vinyl ketone label with the predictions of hydrodynamic models for the protein diffusion, in a discussion of the aggregation state of the Ca2(+)-ATPase in the native sarcoplasmic reticulum membrane. The implications for the study of protein rotational diffusion and segmental motion, and of the proximity relationships between labeled groups, using saturation transfer ESR spectroscopy are discussed

    NEW NITROXIDE REAGENTS FOR THE SELECTIVE SPIN-LABELING AT THE GUANIDINO MOIETY OF ARGININE RESIDUES IN PEPTIDES AND PROTEINS

    No full text
    HANKOVSZKY OH, HIDEG K, VONGOLDAMMER E, et al. NEW NITROXIDE REAGENTS FOR THE SELECTIVE SPIN-LABELING AT THE GUANIDINO MOIETY OF ARGININE RESIDUES IN PEPTIDES AND PROTEINS. BIOCHIMICA ET BIOPHYSICA ACTA. 1987;916(1):152-155
    corecore