544 research outputs found
Hamilton's principle: why is the integrated difference of kinetic and potential energy minimized?
I present an intuitive answer to an often asked question: why is the
integrated difference K-U between the kinetic and potential energy the quantity
to be minimized in Hamilton's principle?
Using elementary arguments, I map the problem of finding the path of a moving
particle connecting two points to that of finding the minimum potential energy
of a static string. The mapping implies that the configuration of a
non--stretchable string of variable tension corresponds to the spatial path
dictated by the Principle of Least Action; that of a stretchable string in
space-time is the one dictated by Hamilton's principle. This correspondence
provides the answer to the question above: while a downward force curves the
trajectory of a particle in the (x,t) plane downward, an upward force of the
same magnitude stretches the string to the same configuration x(t).Comment: 7 pages, 4 figures. Submitted to the American Journal of Physic
Phase and Intensity Distributions of Individual Pulses of PSR B0950+08
The distribution of the intensities of individual pulses of PSR B0950+08 as a
function of the longitudes at which they appear is analyzed. The flux density
of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of
13) due to the passage of the radiation through the interstellar plasma
(interstellar scintillation). The intensities of individual pulses can exceed
the amplitude of the mean pulse profile, obtained by accumulating 770 pulses,
by more than an order of magnitude. The intensity distribution along the mean
profile is very different for weak and strong pulses. The differential
distribution function for the intensities is a power law with index n = -1.1 +-
0.06 up to peak flux densities for individual pulses of the order of 160 Jy
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux
We report results from 120 hours of livetime with the Goldstone Lunar
Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10
ns microwave pulses from the lunar regolith, appearing in coincidence at two
large radio telescopes separated by 22 km and linked by optical fiber. Such
pulses would arise from subsurface electromagnetic cascades induced by
interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are
yet seen, and the implied limits constrain several current models for
ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4;
in final PRL revie
LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique
We describe the design, performance, sensitivity and results of our recent
experiments using the Australia Telescope Compact Array (ATCA) for lunar
Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond
timing, including a limit on an isotropic neutrino flux. We also make a first
estimate of the effects of small-scale surface roughness on the effective
experimental aperture, finding that contrary to expectations, such roughness
will act to increase the detectability of near-surface events over the neutrino
energy-range at which our experiment is most sensitive (though distortions to
the time-domain pulse profile may make identification more difficult). The aim
of our "Lunar UHE Neutrino Astrophysics using the Square Kilometer Array"
(LUNASKA) project is to develop the lunar Cherenkov technique of using
terrestrial radio telescope arrays for ultra-high energy (UHE) cosmic ray (CR)
and neutrino detection, and in particular to prepare for using the Square
Kilometer Array (SKA) and its path-finders such as the Australian SKA
Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov
experiments.Comment: 27 pages, 18 figures, 4 tables
Upper Limits On Periodic, Pulsed Radio Emission from the X-Ray Point Source in Cassiopeia A
The Chandra X-ray Observatory recently discovered an X-ray point source near
the center of Cassiopeia A, the youngest known Galactic supernova remnant. We
have conducted a sensitive search for radio pulsations from this source with
the Very Large Array, taking advantage of the high angular resolution of the
array to resolve out the emission from the remnant itself. No convincing
signatures of a dispersed, periodic source or of isolated dispersed pulses were
found, whether for an isolated or a binary source. We derive upper limits of 30
and 1.3 mJy at 327 and 1435 MHz for the phase-averaged pulsed flux density from
this source. The corresponding luminosity limits are lower than those for any
pulsar with age less than 10^4 years. The sensitivities of our search to single
pulses were 25 and 1.0 Jy at 327 and 1435 MHz. For comparison, the Crab pulsar
emits roughly 80 pulses per minute with flux densities greater than 100 Jy at
327 MHz and 8 pulses per minute with flux densities greater than 50 Jy at 1435
MHz. These limits are consistent with the suggestion that the X-ray point
source in Cas A adds to the growing number of neutron stars which are not radio
pulsars.Comment: accepted by ApJ Letter
Anomalous Radio-Wave Scattering from Interstellar Plasma Structures
This paper considers scattering screens that have arbitrary spatial
variations of scattering strength transverse to the line of sight, including
screens that are spatially well confined, such as disks and filaments. We
calculate the scattered image of a point source and the observed pulse shape of
a scattered impulse. The consequences of screen confinement include: (1) Source
image shapes that are determined by the physical extent of the screen rather
than by the shapes of much-smaller diffracting microirregularities. These
include image elongations and orientations that are frequency dependent. (2)
Variation with frequency of angular broadening that is much weaker than the
trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including
frequency-independent cases; and (3) Similar departure of the pulse broadening
time from the usually expected \nu^{-4} scaling law. We briefly discuss
applications that include scattering of pulses from the Crab pulsar by
filaments in the Crab Nebula; image asymmetries from Galactic scattering of the
sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active
galactic nuclei by intervening galaxies. We also address the consequences for
inferences about the shape of the wavenumber spectrum of electron density
irregularities, which depend on scaling laws for the image size and the pulse
broadening. Future low-frequency (< 100 MHz) array observations will also be
strongly affected by the Galactic structure of scattering material. Our
formalism is derived in the context of radio scattering by plasma density
fluctuations. It is also applicable to optical, UV and X-ray scattering by
grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by
ApJ, revised version has minor changes to respond to referee comments and
suggestion
Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades
We present the first direct experimental evidence for the charge excess in
high energy particle showers predicted nearly 40 years ago by Askaryan. We
directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at
the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target,
producing electromagnetic showers several meters long. A series of antennas
spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio
frequency pulses produced whenever a shower was present. The measured electric
field strengths are consistent with a completely coherent radiation process.
The pulses show 100% linear polarization, consistent with the expectations of
Cherenkov radiation. The field strength versus depth closely follows the
expected particle number density profile of the cascade, consistent with
emission from excess charge distributed along the shower. These measurements
therefore provide strong support for experiments designed to detect high energy
cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let
High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing
We demonstrate that the sensitivity of high-precision pulsar timing
experiments will be ultimately limited by the broadband intensity modulation
that is intrinsic to the pulsar's stochastic radio signal. That is, as the peak
flux of the pulsar approaches that of the system equivalent flux density,
neither greater antenna gain nor increased instrumental bandwidth will improve
timing precision. These conclusions proceed from an analysis of the covariance
matrix used to characterise residual pulse profile fluctuations following the
template matching procedure for arrival time estimation. We perform such an
analysis on 25 hours of high-precision timing observations of the closest and
brightest millisecond pulsar, PSR J0437-4715. In these data, the standard
deviation of the post-fit arrival time residuals is approximately four times
greater than that predicted by considering the system equivalent flux density,
mean pulsar flux and the effective width of the pulsed emission. We develop a
technique based on principal component analysis to mitigate the effects of
shape variations on arrival time estimation and demonstrate its validity using
a number of illustrative simulations. When applied to our observations, the
method reduces arrival time residual noise by approximately 20%. We conclude
that, owing primarily to the intrinsic variability of the radio emission from
PSR J0437-4715 at 20 cm, timing precision in this observing band better than 30
- 40 ns in one hour is highly unlikely, regardless of future improvements in
antenna gain or instrumental bandwidth. We describe the intrinsic variability
of the pulsar signal as stochastic wideband impulse modulated self-noise
(SWIMS) and argue that SWIMS will likely limit the timing precision of every
millisecond pulsar currently observed by Pulsar Timing Array projects as larger
and more sensitive antennae are built in the coming decades.Comment: 16 pages, 9 figures, accepted for publication in MNRAS. Updated
version: added DOI and changed manuscript to reflect changes in the final
published versio
Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection
We report on measurements of 11-18 cm wavelength radio emission from
interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield
Accelerator. The electrons were observed both in a configuration where they
produced primarily transition radiation from an aluminum foil, and in a
configuration designed for the electrons to produce Cherenkov radiation in a
silica sand target. Our aim was to emulate the large electron excess expected
to develop during an electromagnetic cascade initiated by an ultra high-energy
particle. Such charge asymmetries are predicted to produce strong coherent
radio pulses, which are the basis for several experiments to detect high-energy
neutrinos from the showers they induce in Antarctic ice and in the lunar
regolith. We detected coherent emission which we attribute both to transition
and possibly Cherenkov radiation at different levels depending on the
experimental conditions. We discuss implications for experiments relying on
radio emission for detection of electromagnetic cascades produced by ultra
high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR
Abundance, distribution and population trends of Nile crocodile (Crocodylus niloticus) in Gonarezhou National Park, Zimbabwe
The Nile crocodile (Crocodylus niloticus) is an iconic or keystone species in many aquatic ecosystems. In order to understand the abundance, distribution, and population trends of Nile crocodiles in Gonarezhou National Park (GNP), southeastern Zimbabwe, we carried out 4 annual aerial surveys, using a Super Cub aircraft, along 3 major rivers, namely, Save, Runde and Mwenezi, between 2008 and 2011. Our results show that Runde River was characterised by a significant increase in Nile crocodile abundance whereas both Save and Mwenezi rivers were characterised by non-significant increases in Nile crocodile abundance. Overall, we recorded a significant increase in total Nile crocodile population in the three major rivers of the GNP. The non-significant increase in Nile crocodiles in the Mwenezi and Save rivers was likely due to habitat loss, through siltation of large pools, and conflicts with humans, among other factors. We suggest that GNP management should consider halting crocodile egg collection in rivers with low crocodile populations and continuously monitor the crocodile population in the par
- âŠ