20 research outputs found

    Therapeutic Approaches to Delay the Onset of Alzheimer's Disease

    Get PDF
    The key cytopathologies in the brains of Alzheimer's disease (AD) patients include mitochondrial dysfunction and energy hypometabolism, which are likely caused by the accumulation of small aggregates of amyloid-β (Aβ) peptides. Thus, targeting these two abnormalities of the AD brain may hold promising therapeutic value for delaying the onset of AD. In his paper, we discuss two potential approaches to delay the onset of AD. The first is the use of low dose of diaminophenothiazins (redox active agents) to prevent mitochondrial dysfunction and to attenuate energy hypometabolism. Diaminophenothiazines enhance mitochondrial metabolic activity and heme synthesis, both key factors in intermediary metabolism of the AD brain.The second is to use the naturally occurring osmolytes to prevent the formation of toxic forms of Aβ and prevent oxidative stress. Scientific evidence suggests that both approaches may change course of the basic mechanism of neurodegeneration in AD. Osmolytes are brain metabolites which accumulate in tissues at relatively high concentrations following stress conditions. Osmolytes enhance thermodynamic stability of proteins by stabilizing natively-folded protein conformation, thus preventing aggregation without perturbing other cellular processes. Osmolytes may inhibit the formation of Aβ oligomers in vivo, thus preventing the formation of soluble oligomers. The potential significance of combining diaminophenothiazins and osmolytes to treat AD is discussed

    Caloric Restriction Impacts Plasma Micrornas In Rhesus Monkeys

    No full text
    Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR\u27s mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging

    Circulating Microrna Signature Of Genotype-By-Age Interactions In The Long-Lived Ames Dwarf Mouse

    No full text
    Recent evidence demonstrates that serum levels of specific miRNAs significantly change with age. The ability of circulating sncRNAs to act as signaling molecules and regulate a broad spectrum of cellular functions implicates them as key players in the aging process. To discover circulating sncRNAs that impact aging in the long-lived Ames dwarf mice, we conducted deep sequencing of small RNAs extracted from serum of young and old mice. Our analysis showed genotype-specific changes in the circulating levels of 21 miRNAs during aging [genotype-by-age interaction (GbA)]. Genotype-by-age miRNAs showed four distinct expression patterns and significant overtargeting of transcripts involved in age-related processes. Functional enrichment analysis of putative and validated miRNA targets highlighted cellular processes such as tumor suppression, anti-inflammatory response, and modulation of Wnt, insulin, mTOR, and MAPK signaling pathways, among others. The comparative analysis of circulating GbA miRNAs in Ames mice with circulating miRNAs modulated by calorie restriction (CR) in another long-lived mouse suggests CR-like and CR-independent mechanisms contributing to longevity in the Ames mouse. In conclusion, we showed for the first time a signature of circulating miRNAs modulated by age in the long-lived Ames mouse

    Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence.

    Get PDF
    In cell senescence, cultured cells cease proliferating and acquire aberrant gene expression patterns. MicroRNAs (miRNAs) modulate gene expression through translational repression or mRNA degradation and have been implicated in senescence. We used deep sequencing to carry out a comprehensive survey of miRNA expression and involvement in cell senescence. Informatic analysis of small RNA sequence datasets from young and senescent IMR90 human fibroblasts identifies many miRNAs that are regulated (either up or down) with cell senescence. Comparison with mRNA expression profiles reveals potential mRNA targets of these senescence-regulated miRNAs. The target mRNAs are enriched for genes involved in biological processes associated with cell senescence. This result greatly extends existing information on the role of miRNAs in cell senescence and is consistent with miRNAs having a causal role in the process
    corecore