120 research outputs found

    Positive pion absorption on 3He using modern trinucleon wave functions

    Get PDF
    We study pion absorption on 3He employing trinucleon wave functions calculated from modern realistic NN interactions (Paris, CD Bonn). Even though the use of the new wave functions leads to a significant improvement over older calculations with regard to both cross section and polarization data, there are hints that polarization data with quasifree kinematics cannot be described by just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure

    Large Extra Dimensions and Decaying KK Recurrences

    Full text link
    We suggest the possibility that in ADD type brane-world scenarios, the higher KK excitations of the graviton may decay to lower ones owing to a breakdown of the conservation of extra dimensional ``momenta'' and study its implications for astrophysics and cosmology. We give an explicit realization of this idea with a bulk scalar field Φ\Phi, whose nonzero KK modes acquire vacuum expectation values. This scenario helps to avoid constraints on large extra dimensions that come from gamma ray flux bounds in the direction of nearby supernovae as well as those coming from diffuse cosmological gamma ray background. It also relaxes the very stringent limits on reheat temperature of the universe in ADD models.Comment: 16 pages, late

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    Supersymmetric Extra Dimensions: Gravitino Effects in Selectron Pair Production

    Get PDF
    We examine the phenomenological consequences of a supersymmetric bulk in the scenario of large extra dimensions. We assume supersymmetry is realized in the bulk and study the interactions of the resulting bulk gravitino Kaluza-Klein (KK) tower of states, with supersymmetry breaking on the brane inducing a light mass for the zero-mode gravitino. We derive the 4-d effective theory, including the couplings of the bulk gravitino KK states to fermions and their scalar superpartners. The virtual exchange of the gravitino KK states in selectron pair production in polarized \epem collisions is then examined. We find that the leading order operator for this exchange is dimension six, in contrast to that of bulk graviton KK exchange which induces a dimension eight operator at lowest order. The resulting kinematic distributions for selectron production are dramatically altered from those in D=4 supersymmetric scenarios, and can lead to a enormous sensitivity to the fundamental higher dimensional Planck scale, of order 2025×s20-25\times \sqrt s.Comment: 48 pg

    Kaluza-Klein gravitino production with a single photon at e^+ e^- colliders

    Full text link
    In a supersymmetric large extra dimension scenario, the production of Kaluza-Klein gravitinos accompanied by a photino at e^+ e^- colliders is studied. We assume that a bulk supersymmetry is softly broken on our brane such that the low-energy theory resembles the MSSM. Low energy supersymmetry breaking is further assumed as in GMSB, leading to sub-eV mass shift in each KK mode of the gravitino from the corresponding graviton KK mode. Since the photino decays within a detector due to its sufficiently large inclusive decay rate into a photon and a gravitino, the process e^+ e^- -> photino + gravitino yields single photon events with missing energy. Even if the total cross section can be substantial at sqrt(s)=500 GeV, the KK graviton background of e^+ e^- -> photon + graviton is kinematically advantageous and thus much larger. It is shown that the observable, sigma(e^-_L)-sigma(e^-_R), can completely eliminate the KK graviton background but retain most of the KK gravitino signal, which provides a unique and robust method to probe the supersymmetric bulk.Comment: Reference added and typos correcte

    What is the structure of the Roper resonance?

    Get PDF
    We investigate the structure of the nucleon resonance N^*(1440) (Roper) within a coupled-channel meson exchange model for pion-nucleon scattering. The coupling to pipiN states is realized effectively by the coupling to the sigmaN, piDelta and rhoN channels. The interaction within and between these channels is derived from an effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms for the coupling of the Delta isobar, the omega meson and the 'sigma', which is the name given here to the strong correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by meson-baryon dynamics alone; no genuine N^*(1440) (3 quark) resonance is needed in order to fit piN phase shifts and inelasticities.Comment: 55 pages, 14 figure

    Three-Nucleon Forces from Chiral Effective Field Theory

    Get PDF
    We perform the first complete analysis of nd scattering at next-to-next-to-leading order in chiral effective field theory including the corresponding three-nucleon force and extending our previous work, where only the two-nucleon interaction has been taken into account. The three-nucleon force appears first at this order in the chiral expansion and depends on two unknown parameters. These two parameters are determined from the triton binding energy and the nd doublet scattering length. We find an improved description of various scattering observables in relation to the next-to-leading order results especially at moderate energies (E_lab = 65 MeV). It is demonstrated that the long-standing A_y-problem in nd elastic scattering is still not solved by the leading 3NF, although some visible improvement is observed. We discuss possibilities of solving this puzzle. The predicted binding energy for the alpha-particle agrees with the empirical value.Comment: 36 pp, 20 figure

    Couplings of light I=0 scalar mesons to simple operators in the complex plane

    Full text link
    The flavour and glue structure of the light scalar mesons in QCD are probed by studying the couplings of the I=0 mesons σ(600)\sigma(600) and f0(980)f_0(980) to the operators qˉq\bar{q}q, αsG2\alpha_s G^2 and to two photons. The Roy dispersive representation for the ππ\pi\pi amplitude t00(s)t_0^0(s) is used to determine the pole positions as well as the residues in the complex plane. On the real axis, t00t_0^0 is constrained to solve the Roy equation together with elastic unitarity up to the K\Kbar threshold leading to an improved description of the f0(980)f_0(980). The problem of using a two-particle threshold as a matching point is discussed. A simple relation is established between the coupling of a scalar meson to an operator jSj_S and the value of the related pion form-factor computed at the resonance pole. Pion scalar form-factors as well as two-photon partial-wave amplitudes are expressed as coupled-channel Omn\`es dispersive representations. Subtraction constants are constrained by chiral symmetry and experimental data. Comparison of our results for the qˉq\bar{q}q couplings with earlier determinations of the analogous couplings of the lightest I=1 and I=1/2I=1/2 scalar mesons are compatible with an assignment of the σ\sigma, κ\kappa, a0(980)a_0(980), f0(980)f_0(980) into a nonet. Concerning the gluonic operator αsG2\alpha_s G^2 we find a significant coupling to both the σ\sigma and the f0(980)f_0(980).Comment: 31 pages, 5 figure

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this first part, we present the results of the pion-induced reactions and the extracted resonance and background properties with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.
    corecore