3 research outputs found

    Deep saliency detection-based pedestrian detection with multispectral multi-scale features fusion network

    Get PDF
    In recent years, there has been increased interest in multispectral pedestrian detection using visible and infrared image pairs. This is due to the complementary visual information provided by these modalities, which enhances the robustness and reliability of pedestrian detection systems. However, current research in multispectral pedestrian detection faces the challenge of effectively integrating different modalities to reduce miss rates in the system. This article presents an improved method for multispectral pedestrian detection. The method utilises a saliency detection technique to modify the infrared image and obtain an infrared-enhanced map with clear pedestrian features. Subsequently, a multiscale image features fusion network is designed to efficiently fuse visible and IR-enhanced maps. Finally, the fusion network is supervised by three loss functions for illumination perception, light intensity, and texture information in conjunction with the light perception sub-network. The experimental results demonstrate that the proposed method improves the logarithmic mean miss rate for the three main subgroups (all day, day and night) to 3.12%, 3.06%, and 4.13% respectively, at “reasonable” settings. This is an improvement over the traditional method, which achieved rates of 3.11%, 2.77%, and 2.56% respectively, thus demonstrating the effectiveness of the proposed method

    A Cross-Modality Person Re-Identification Method Based on Joint Middle Modality and Representation Learning

    No full text
    Modality differences and intra-class differences have been hot research problems in the field of cross-modality person re-identification currently. In this paper, we propose a cross-modality person re-identification method based on joint middle modality and representation learning. To reduce the modality differences, a middle modal generator is used to map different modal images to a unified feature space to generate middle modality images. A two-stream network with parameter sharing is used to extract the combined features of the original image and the middle modality image. In addition, a multi-granularity pooling strategy combining global features and local features is used to improve the representation learning capability of the model and further reduce the modality differences. To reduce the intra-class differences, the model is further optimized by combining distribution consistency loss, label smoothing cross-entropy loss, and hetero-center triplet loss to reduce the intra-class distance and accelerate the model convergence. In this paper, we use the publicly available datasets RegDB and SYSU-MM01 for validation. The results show that the proposed approach in this paper reaches 68.11% mAP in All Search mode for the SYSU-MM01 dataset and 86.54% mAP in VtI mode for the RegDB dataset, with a performance improvement of 3.29% and 3.29%, respectively, which demonstrate the effectiveness of the proposed method
    corecore