
Deep saliency detection-based
pedestrian detection with
multispectral multi-scale features
fusion network

Li Ma1,2, Jinjin Wang1,2*, Xinguan Dai1,2 and Hangbiao Gao3

1College of Communication and Information Engineering, Xi’an University of Science and Technology,
Xi’an, China, 2Xi’an Key Laboratory of Heterogeneous Network Convergence Communication, Xi’an,
China, 3Safety Supervision Department, Shaanxi Cuijiagou Energy Co., Ltd., Tongchuan, China

In recent years, there has been increased interest in multispectral pedestrian
detection using visible and infrared image pairs. This is due to the complementary
visual information provided by these modalities, which enhances the robustness
and reliability of pedestrian detection systems. However, current research in
multispectral pedestrian detection faces the challenge of effectively integrating
different modalities to reduce miss rates in the system. This article presents an
improved method for multispectral pedestrian detection. The method utilises a
saliency detection technique tomodify the infrared image and obtain an infrared-
enhanced map with clear pedestrian features. Subsequently, a multiscale image
features fusion network is designed to efficiently fuse visible and IR-enhanced
maps. Finally, the fusion network is supervised by three loss functions for
illumination perception, light intensity, and texture information in conjunction
with the light perception sub-network. The experimental results demonstrate
that the proposed method improves the logarithmic mean miss rate for the three
main subgroups (all day, day and night) to 3.12%, 3.06%, and 4.13% respectively, at
“reasonable” settings. This is an improvement over the traditional method, which
achieved rates of 3.11%, 2.77%, and 2.56% respectively, thus demonstrating the
effectiveness of the proposed method.

KEYWORDS

multispectral pedestrian detection, visible and infrared image, saliency detection,
multiscale feature fusion, illumination perception

1 Introduction

Pedestrian target detection is a fundamental and basic task for various applications,
including autonomous driving [1, 2] and intelligent video surveillance [3, 4]. It has been a
popular research topic for decades, and significant progress has been made in recent years.
However, developing a highly reliable and robust pedestrian detector for practical
applications remains a challenge. Many pedestrian detection methods [5, 6] only use
visible light images, which can lead to inadequate detection in complex environments (e.g.,
cloudy and rainy weather, insufficient light, and cluttered backgrounds, etc.). Pedestrian
temperature during the day similar to the ambient temperature or lower than the
surrounding objects, makes infrared image characterization insignificant. In or poor
light conditions or at night, visible light images may not fully characterise the imaged
scene. Therefore, relying solely on a single modality for detection has significant limitations.
To overcome this, a widely used technique is to fuse infrared and visible light images [7, 8] to
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achieve a more effective and comprehensive characterisation of the
scene. This enhances the robustness of pedestrian target detection
methods. Despite the significant progress made in pedestrian
detection using infrared and visible images in past research, there
are still several areas that require improvement.

The development of various image fusion techniques, including
traditional approaches [9] and deep learning techniques [10], has
enabled researchers to achieve better results when combining
infrared and visible images. Conventional image fusion
algorithms involve mapping the image to the transform domain,
followed by applying a set of fusion rules to the two images to create
a single image that combines infrared and visible information.
Representative methods for complex scenarios include multiscale
transform [11], sparse representation [12], and subspace learning
[13]. Traditional algorithms have achieved certain results, but their
high reliance on manual design makes it challenging to adapt to
complex situations and their time-consuming nature imposes
limitations. It is of great importance to explore alternative
methods that can overcome these limitations.

Recent advances in deep neural network technology have
demonstrated their ability to extract features and combine
multiple modes. Therefore, deep learning frameworks have
become increasingly popular for multispectral information fusion.
Li et al. [8] proposed DenseFuse, which introduces dense
connectivity into an encoder network to extract underlying image
features for feature reuse. In the following step, the encoder fuses the
deep features extracted by the encoder using the over-L1 paradigm
or addition. Finally, the decoder generates the fused image.
Additionally, deep features are challenging to interpret, so
merging strategies developed manually cannot accurately
determine the weights and, therefore, do not adequately cover
the attributes of deep features. To prevent the limitations of an
artificially constructed merger approach, Ma et al. [10] proposed an
alternative method for image combining. They introduced the image
combining problem into a generative network that is commonly
used to resolve conflict problems between features. Meanwhile, Hou
et al. [14] determined the saliency of the source image based on pixel
intensities, which guided the fusion network in preserving rich
salient information from the source images when generating images.

Although the network structures described above perform well
in recovering image detail, they are designed at a single scale, which
limits their ability to capture contextual information in the image.
To better meet the need for broader context awareness, this
limitation needs to be addressed. While there have been some
successes, deep learning-based approaches still face a number of
obstacles that need to be carefully considered, in particular the
problem of light imbalance, which has not yet been fully
investigated. Light imbalance, which refers to the difference in
lighting conditions between daytime and nighttime scenes, has
not yet been extensively studied [15, 16]. While visible images
typically have sharper texture details, infrared images provide
more salient targets and richer texture information at night
compared to visible images. However, current approaches [17,
18] generally assume that texture information is only present in
images visible to the human eye. This assumption is reasonable in
daytime scenes, but at night, the fused image may lose texture
details, which can affect its quality.

In order to achieve a better fusion of the two modalities and thus
improve the robustness of the pedestrian detector, we propose a
novel multispectral pedestrian detection method in this paper.

First, a saliency detection method is used to improve the
accuracy of the detection algorithm by enhancing the pedestrian
features to overcome the problem of inconspicuous pedestrian
features in daytime images. Then, to solve the problem of
information loss in merged images, a multiscale feature
extraction method is used to capture various contextual
information from images at different scales. The image fusion
network can comprehend the content and structure of the image
by introducingmultiple parallel branches, each extracting and fusing
features at different levels. This multiscale approach enables the
network to encode both local and global features simultaneously,
enhancing its ability to handle complex scenarios.

To address the problem of illumination imbalance, we
implemented an illumination-aware sub-network that determines
the probability of visible images during the day and at night. This
sub-network provides valuable information regarding the lighting
conditions of visible images. The introduction of this sub-network
not only improves the quality and accuracy of image fusion methods
but also enhances their efficiency. This paper primarily contributes
to the following areas, as outlined below:

(1) This paper proposes an improved method for multi-spectral
pedestrian detection. It utilises a deep saliency detection
technique to obtain saliency maps of infrared images,
which enhances pedestrian features. This method solves
the problem of inconspicuous pedestrian features in
infrared images during daytime.

(2) A self-coding Multi-scale Image Features Fusion (MIFF)
network is designed. MIFF uses a feature fusion module to
combine different modal features at the same scale. The image
quality can be improved by fusing features of different
dimensions;

(3) An illumination-aware subnetwork has been developed to
calculate the probability of visible images during day and
night. To facilitate fusion network training, illumination-
aware loss, light intensity loss, and texture information loss
have also been developed. By detecting the illumination, the
meaningful information of the source image can be fused
around the clock.

(4) The experimental results demonstrate that our approach
outperforms other advanced methods in detecting
pedestrians when applied to the publicly available
KAIST dataset.

2 Related technologies and principles

The first section of this chapter provides an overview of the
saliency target detection method, followed by a description of deep
learning-based fusion methods, as well as a brief overview of
multispectral pedestrian detection capabilities and algorithms.
Furthermore, we intend to introduce illumination awareness as a
key concept aimed at improving the effectiveness of multimodal
image fusion.
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2.1 Principles of saliency detection
technology

Saliency detection, a method of highlighting targets in salient
regions of an image, has seen a number of approaches emerge over
the last few decades. Traditional methods of saliency detection
include global contrast [19], local contrast [20] and hand-crafted
saliency-based approaches such as colour and texture [21].

The majority of current saliency detection methods
implement saliency detection tasks with convolutional neural
networks. In these methods, the core task of saliency detection is
to calculate the weight and extract the salient target information
by analyzing the infrared image. This is then used to calculate
weights and extract salient information about the target.
Specifically, firstly, we pass through a weight calculation stage
to subtly divide the original image into an underlying image and
a detail image. Then, we applied a specialised saliency detection
method to generate the saliency maps of the bottom and detail
maps respectively. Furthermore, the weight distribution for the
bottom image and detail image was determined through the
clever integration of these saliency maps.

Salient target extraction is an important part of the saliency
detection process. Its main goal is to extract information about
salient regions from visible and infrared images, reflecting the key
information of the image. Hou et al. [22] introduced short
connections to the network architecture and proposed a saliency
detection method that considers hopping connections for the first
time. Luo et al [23] developed an innovative multi-resolution mesh
structure that combines local and global information. Zhao et al [24]
proposed a saliency detection network that uses feature and
attention modules to capture richer contextual information based
on pyramidal feature attention. Zhou et al. [25] proposed a
confidence-aware saliency extraction (CSD) method that obtains
rich saliency knowledge from noisy labels. The experimental results
demonstrate that the obtained saliency maps have more precise
boundaries. Although these innovative methods promote the
development and research of saliency detection, a single saliency
detection method may not be sufficient to express all features.
Therefore, it is necessary to find more effective ways to express
the features of saliency detection.

Saliency detection techniques are employed to fuse the original
and saliency maps of infrared images. The information fusion
method enhances the accuracy and reliability of salient target
detection under infrared spectral conditions by capturing saliency
features in images. Classical saliency detection methods are closely
related to saliency detection tasks, which improves the recognition
and analysis of salient targets in complex scenes.

2.2 Deep learning-based image
fusion methods

Deep learning-based image fusion methods are a current
research focus and Frontier in image fusion. These methods
efficiently and accurately fuse images from various data sources.
Neural networks are well-suited to this task due to their ability to
model nonlinear functions. In deep learning image fusion, there are
four main methodologies: autoencoder (AE), convolutional neural

networks (CNNs), generative adversarial networks (GANs), and
multiscale feature fusion.

2.2.1 Auto-encoder (AE)-based image
fusion method

An Auto-Encoder (AE)-based image fusion method, comprised
of an encoder and a decoder, belongs to the unsupervised learning
neural network class. The encoder compresses the input image, and
the decoder remaps the compressed features back to the original
data space. The method involves two main processes: feature
extraction and image reconstruction. DRF et al [26]
independently fuse the source image after decomposing it into
scene and attribute components. However, this method only
addresses interpretability in terms of feature extraction and not
fusion methods. Xu et al. [27] have developed an image fusion
method based on Auto-Encoder (AE) technology to facilitate image
interpretation. To enhance the interpretability of the fusion method,
they designed multiple encoders to extract specific features. The
experiments showed that the Auto-Encoder (AE)-based image
fusion method demonstrates superior performance in dealing
with the problem of fusing images from different sources.
Furthermore, due to its efficient training and low computational
costs, this method has become prevalent in image fusion
applications.

2.2.2 Convolutional neural network (CNN)-based
image fusion method

The CNN-based image fusion method, based on the Encode-
Decoder framework, uses two independent encoders to combine the
features of the input and output images. Zhang et al [28] propose an
end-to-end image fusion framework that implements the process
using the intensity and gradient paths while maintaining the ratio of
gradient and intensity. Xu et al [29] examine the interactions
between different image fusion tasks and co-train a unified
model to solve multitask fusion by using flexible weighting.
Additionally, the attention-based mechanism enables the network
to accurately distinguish important information in different regions
by introducing an attention model for more precise image fusion.

2.2.3 Generative adversarial network (GAN)-based
image fusion method

Generative Adversarial Network (GAN)-based image fusion
methods utilise a generative adversarial network including a
generator and a discriminator. The generator maps the input
image and the image to be fused to a high-quality output image,
and the discriminator determines the consistency between the
generator output and the real fused image. Considering the
fusion of infrared images and IR images as a game between a
generator and the discriminator innovatively, Ma et al [10] use
the discriminator to drive the generator to synthesise a more
texturally-rich fused image. To solve the single classification
problem, Ma et al [30] propose a GAN-based multiclassification
fusion method, which transforms image fusion into
multiclassification by introducing a multiclassifier to more
comprehensively and significantly enhance the texture
information and global contrast of the fused image. The whole
training process ensures that the final fused image reflects
multimodal data information. It is recommended that the
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generator output be gradually increased to achieve the maximum
fusion effect. A multiclassifier has resulted in a significant
improvement in image quality, as well as a considerable
improvement in the visual effect of the fused image. As a result,
we can introduce more texture details and contrast in image
brightness during the image fusion process.

2.2.4 Method based on multi-scale image
features fusion

The Method based on multiscale image features fusion is used to
combine information from different sources or different feature
representations to improve the performance of a task. It usually
involves integrating features from multiple scales to obtain richer
and more accurate image information capable of enhancing the
model. Li et al [31], who have developed a fusion strategy based on
spatial or channel attention, proposed a multi-scale image fusion
autoencoder framework, NestFusion, in which the encoder extracts
the multiscale features using sequential downsampling, and the
decoder uses honeycomb connections to fuse multiscale features,
thereby enhancing the details of the background and the salient
regions of the image; in order to solve the problem of unlearnable
fusion strategy of NestFuse, Li et al. propose the RFN-Nest fusion
network [32], and further designed the Residual Fusion Network
(RFN) on the basis of the NestFuse framework to replace the hand-
crafted fusion strategy. In high design complexity, the above multi-
scale feature network architectural models have high requirements
on computational power, memory consumption, and graphics
memory capacity, thus hindering their application on resource-
constrained devices. In addition, the training of the RFN-Nest fusion
strategy is separate from the training of the encoder and decoder,
which means that features of different modes cannot be extracted
effectively. Therefore, in this paper, a self-encoder-based Multiscale
Image Features Fusion (MIFF) network is designed.

2.3 Illumination aware

In fact, some real-world computer vision applications have
incorporated illumination into the modelling stage. Sakkos et al
[33] developed a three-fold multi-task generated opponent for the
network, with the goal of fusing functions from different
illumination conditions on the branch division, which
significantly improves the foreground division property. Li et al
[34] proposed an illumination-aware Faster R-CNN that achieves
adaptive convergence of visible and infrared image sub-networks by
introducing a gating function on the output from an illumination-
aware network.

However, multi-modal datasets present a key problem: visible
images contain useful information, while infrared images capture
supplementary information. The classical approach has addressed
the problem of under-capture of IR images at night, but it is difficult
for visible and infrared images to capture important information in
darkness or low light conditions, and the fusion images still need
more texture information to achieve better results.

Therefore, we propose an improved approach that introduces an
illumination-aware subnetwork designed to enhance meaningful
information in visible images under dark or poor illumination

conditions. By doing so, we can make better use of meaningful
information when fusion occurs.

Specifically, the introduction of an illumination-aware sub-
network enables us to perform targeted enhancement of visible
images based on ambient illumination conditions. By combining the
illumination-aware sub-network with other image fusion methods,
this approach enhances the quality and information richness of the
fused image under different lighting conditions. The use of
multimodal data further improves the performance of the fused
images in different environments.

Overall, we propose a method that eliminates information
fusion in multimodal datasets by using visible and infrared
images simultaneously. Additionally, the introduction of an
illumination-aware sub-network under dark or poor illumination
conditions helps to achieve more accurate and richer image fusion.

2.4 Multispectral pedestrian detection

Pedestrian detection methods use spectral images for target
detection. Monospectral approaches rely only on a single gamma
or multicolour object, but are susceptible to interference from
factors such as illumination, colour and texture. However,
variations in these factors may cause the degradation of the
performance of traditional methods under different conditions,
limiting their application in complex scenes.

During the past few years, multispectral imaging technology has
expanded pedestrian detection areas. Multispectral pedestrian
detection extracts more feature information, reduces interference
and improves accuracy through the combination of multispectral
bands, including acquisition of multispectral images, data pre-
processing, feature extraction and pedestrian detection.
Multispectral pedestrian detection has stronger anti-interference
ability and accuracy compared to single-spectrum methods.
However, it requires more data processing and storage resources.

Kim et al [35] proposed a Multispectral Pedestrian Detection
Framework that incorporated enhancement methods and multiple
labels for pedestrian detection. Tang et al [36] developed a bi-
directional image alignment module and introduced semantic
constraints based on segmentation to address fusion network
requirements. Ding et al. [37] developed a multispectral
pedestrian single-shot detection method that integrates visible
and infrared image information to balance accuracy and speed.
Li et al. [25] proposed confidence-aware multispectral pedestrian
detection algorithms that fuse different branches of the image for
prediction based on Dempster-Shafer theory. The experimental
results demonstrate an improvement in detection accuracy. Nati
Ofir et al [38] developed a new method for achieving multispectral
image fusion and retaining a large amount of detail, based on
hyperpixel segmentation.

These innovative methods strongly support the research and
practical application of multispectral pedestrian detection, and
promote the development and progress of this field. The
continuous evolution of technology is expected to enable
multispectral pedestrian detection to demonstrate its potential in
various fields and offer more precise and reliable solutions to
practical problems.
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3 Methods of work

In this section, we present our proposal for a multispectral
pedestrian detection method which includes three original
contributions: saliency detection, multiscale image feature fusion,
and illumination awareness. Detailed information about each
contribution will be described in this section.

3.1 Overall structure

As shown in Figure 1, our proposed improved pedestrian
detection method is based on a technical framework.

Firstly, a saliency map of the infrared image is generated by
using saliency detection technique to enhance the pedestrian
features in the image. However, the saliency map discards all
texture information from the IR image. To solve this problem,
we enhanced the IR image with a saliency map by replacing one
channel of the three-channel IR image with the saliency map to
obtain the enhancement map. By using this method, we can produce
a synthesised image with significant pedestrian features. In addition,
we retain other texture information in the infrared image.

Following the enhancement of the image and the visible image,
the images are fed into a multiscale image feature fusion network.
This is done to create the final fused image. In this fusion network,
we introduce the feature enhancement fusion module, the main task
of which is to efficiently merge these two features at the same scale.
This innovative module improves image fusion so that the final
fused image generated is more compatible with the desired visual
criteria and requirements.

The illumination-aware sub-network is introduced to capture key
details of the image under different lighting conditions, thus
enhancing the quality and information richness of the merged

image. By sensing lighting conditions, this sub-network helps
capture and retain meaningful information in fused source image,
which improves the network’s performance under different lighting
conditions, resulting in more accurate and effective fused images.

To train the fusion network effectively, we introduce several loss
functions, including illumination-aware loss, light intensity loss, and
texture information loss, which jointly guide the training process of
the fusion network. Illumination-aware loss helps the model to
better understand the lighting conditions in the image. Light
intensity loss helps to control the overall brightness of the image.
Loss of texture information preserves image details and texture
characteristics.

By combining various loss functions, we can train fusion
networks that are more adaptable to different lighting conditions
and image contents, thereby enhancing the quality and robustness of
image fusion.

Finally, Faster R-CNN is employed for target detection to
achieve improved multispectral pedestrian detection.

3.2 Deep saliency detection

The paper presents a saliency map of the infrared image, which
aids the pedestrian detector in performing better at night. Saliency
detection techniques are classified into two categories: static saliency
detection and depth saliency detection.

The static saliency detection method is mainly based on
assumptions such as high contrast between salient targets and
background, simple background, and single light source. Manual
features with color and texture contrast are designed, or information
such as spatial position priors are introduced to measure the saliency
of images. However, manual features and a priori cannot capture
high-level and global semantic information about a given object.

FIGURE 1
In this paper, we propose a general structure for the multispectral pedestrian detection method. Adapted from KAIST Multispectral Pedestrian
Detection Benchmark, licensed under CC BY-NC-SA 4.0.
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In recent years, a large number of scholars have begun to study
deep neural network-based saliency detection methods. The
significance detection was further improvement in accuracy by
exploiting and utilising the properties of the individual feature
maps of the contextual neural network. Proposed in PFA [24]
(Pyramid Feature Attention Network), the deep saliency
detection method effectively focuses on both low- and high-level
spatial structure features for detecting saliency levels. The method
has a powerful feature extraction capability and can accurately locate
salient targets. Therefore, this paper uses PFA (Pyramid Feature
Attention Network) as the saliency detection method. Details are
described in the following.

3.3 Auto-encoder based multiscale image
feature fusion

Figure 2 illustrates the network structure for the multiscale
feature fusion network described in this paper, which employs an
end-to-end training approach. The network comprises three
sections: an encoder module, a feature enhancement fusion
module, and a decoder module. Enhanced and visible Images as
a result of the input are represented by Ien and Ivi. If represent the
final image after the fusion process is completed.

Due to the large variability of the two images, two mutually
independent encoder sections are employed in this paper. These
sections determine the multiscale features of the enhanced image
and the visible image, respectively. For a single input image, four
convolutional layers are used in the encoder. With Conv-1,
convolutional layers map the input image to higher dimensions.
Conv-2 is a 3 × 3 convolutional layer used to extract shallow features
from the image. There are two maximal pooling layers, Conv-3 and
Conv-4, which include a convolutional layer of 1 × 1 and a
maximum pooling layer with a downsampling rate of 2. This is
designed to extract features with high-level semantic information. It
is recommended that the encoder output be divided into three scales:
Level 1, Level 2, and Level 3. An enhanced and visible image feature
is included with each scale.

A Feature Enhancement Fusion Module (FEFM) consists of
three Feature Enhancement Fusion Layers (FEFCs). These layers
fuse augmented map features and visible map features derived from
the decoder at each scale in the system. The design and structure of
the feature augmentation fusion layers are shown in Figure 3.

Firstly, the Feature Enhancement Fusion Layer implemented a
3 × 3 convolution operation on the decoder’s augmented and visible
map feature pairs at each scale to further extract the depth features,
respectively, to obtain features Fien and Fivi, where i ∈ 1, 2, 3{ }
denotes the scale level at which they are located. The
enhancement fusion of features from different modalities is then
performed based on the idea of differential amplifiers. Features Fien
and Fivi can be represented in terms of their common features and
their respective private features with the following equations:

Fi
en �

Fi
en + Fi

en

2
+ Fi

vi − Fi
vi

2
� Fi

en + Fi
vi

2
+ Fi

en − Fi
vi

2
(1)

Fi
vi �

Fi
vi + Fi

vi

2
+ Fi

en − Fi
en

2
� Fi

en + Fi
vi

2
+ Fi

vi − Fi
en

2
(2)

In this paper, let Di
en−vi � (Fien − Fivi)/2, Ci

en+vi � (Fien + Fivi)/2,
Di

vi−en � (Fivi − Fien)/2, where Ci
en+vi denotes the public features

extracted from the enhanced image and the visible image, Di
en−vi

and Di
vi−en denote the respective private features. Then the public

and private feature states of the enhanced image and the visible
image are enhanced with features using ECA (Efficient Channel
Attention) module and then aggregated to get the fusion features Fif ,
the mathematical expression for Eq. 3 can be seen in equation.
Where ECA (−) denotes the Efficient Channel Attention module for
attenuating the effect of redundant channels on the model
performance.

Fi
f � ECA Di

en−vi( ) + ECA Di
vi−en( ) + ECA Ci

ir+en( ) (3)
Efficient Channel Attention schematic is shown in Figure 4. After

applying Global Average Pooling (GAP) to the existing feature map X,
the resulting feature map will be approximately 1 × 1 in size. In order to
determine the association between each channel and its four neighboring
channels, it is applied to one-dimensional convolution with a kernel size
of four. In addition, the importanceweight of each channel is determined

FIGURE 2
Auto-Encoder basedmulti-scale image feature fusion network. Adapted from KAIST Multispectral Pedestrian Detection Benchmark, licensed under
CC BY-NC-SA 4.0.
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through the sigmoid activation function. A final output feature map �X is
derived by multiplying the corresponding elements of the original input
feature map. It is possible to determine channel attention weights for
effective channel interaction through the Efficient Channel Attention
module, since it takes into account cross-channel information
interaction without dimensionality reduction.

The enhanced image and the visible image are obtained after the
encoder module and the feature enhancement fusion module to obtain
the enhanced features at three different scalesF1f ,F

2
f , and F3f . The upward

arrows in the decoder module in Figure 2 denote the up-sampling
module, which consists of the 1 × 1 convolution and up-sampling
operations. Add denotes the summation operation. The decoder

FIGURE 3
Feature enhanced fusion layer architecture.

FIGURE 4
Diagram of the ECA module.

TABLE 1 Network parameters for encoders and decoders.

Layer Input k s Padding n1 n2 Activate fnuction Output

Encoder Conv-1 640 × 512 1 1 — 3 16 ReLU 640 × 512

Conv-2 640 × 512 3 1 Same 16 32 ReLU 640 × 512

Conv-3 640 × 512 1 1 — 32 64 ReLU 320 × 256

Conv-4 320 × 256 1 1 — 64 128 ReLU 160 × 128

Decoder Conv-5 160 × 128 3 1 Same 128 128 - 160 × 128

Conv-6 160 × 128 3 1 Same 128 128 - 160 × 128

UP1 160 × 128 1 1 — 128 64 - 320 × 256

UP2 160 × 128 1 1 — 128 64 - 320 × 256

Conv-7 320 × 256 3 1 Same 64 64 - 320 × 256

Conv-8 640 × 512 3 1 Same 32 32 - 640 × 512

UP3 320 × 256 1 1 — 64 32 - 640 × 512

UP4 320 × 256 1 1 — 64 32 - 640 × 512

Conv-9 640 × 512 3 1 Same 32 3 Tanh 640 × 512
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undergoes a series of up-sampling, summation and convolution
operations to obtain the final fused image If . Table 1 lists the
network construction the parameters of the encoder and decoder,
including the concentration kernel size (k), the movement step (s), the
number of input channels (n1), the number of output channels (n2), and
the up-sampling module (UP).

3.4 Light factor based illumination-aware
sub-network

Our research focuses on developing an Illumination-aware sub-
network that approximates light conditions. Figure 5 below shows a
schematic representation of this network and the specific network
structure is shown in Figure 6. By feeding a visible image into this
network, we performed a four-layer convolution operation to extract deep
features of the image. Then, we transformed these features into a vector
and generated a set of lighting probabilities by a global average pooling
layer, a layer of fully connected neural network combined with a Sigmoid
based activation function Pd,Pn{ }. Where Pd indicates the approximate
probability that the image is in daylight, andPn indicates the approximate
probability that the image is in nighttime. By combiningmultiscale image
features, the multiscale fusion network creates a multiscale image that
incorporates meaningful information from both enhanced and visible
images. In this report, guidance is provided regarding illumination-aware
loss, light intensity loss, and texture information loss.

3.5 Fusion loss function

As a means of ensuring that the multiscale image feature fusion
network can adaptively fuse meaningful information using

illumination information, we propose an illumination-aware loss
Lill, which has the following definition:

Lill � Pd ×
1

HW
If − Ivi‖ ‖1 + Pn ×

1
HW

If − Ien‖ ‖1 (4)

It is significant to note that H and W represent the image’s height
and width, and ‖ · ‖1 denotes the L1-paradigm. This loss adjusts merged
image intensity constraints according to illumination probability.
Consequently, the luminance information in the source image will be
dynamically updated. There is, however, the possibility that the fused
image may not maintain optimal luminance distribution. In order to
address this issue, we will introduce the concept of light intensity loss
Laux, defined as follows:

Laux � 1
HW

If − max Ien, Ivi( )‖ ‖1 (5)

In this definition, max(·) means taking the maximum value of
each pixel of each image.

Considering the importance of texture details in the detection
process, we then introduce texture information loss Ltex, which is
defined as follows:

Ltex � 1
HW

∇Ien| | − ∇Ivi| |)‖ ‖1 (6)

Assuming that ∇ denotes the gradient operator, we compute the
gradient in this paper using the Sobel operator. | · | represents the
operation of taking absolute values.

Finally, our total loss Ltotal is defined as:

Ltotal � Lill+λ1Laux+λ2Ltex (7)
Where λ1 and λ2 are two balancing coefficients to regulate the

percentage of each loss.

FIGURE 5
Schematic diagram of the lighting sensing sub-network. Adapted fromKAISTMultispectral Pedestrian Detection Benchmark, licensed under CC BY-
NC-SA 4.0.

FIGURE 6
Illumination-aware sub-network structure.
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We have developed a multiscale image feature fusion network
that dynamically maintains optimal intensity distribution no matter
what the illumination situation is. This is under the guidance of
illumination-aware loss, light intensity loss, and texture information
loss. The ideal texture details can be obtained under the guidance of
texture information loss. These loss functions ensure that we can get
meaningful fused images throughout the day.

4 Experimentation

This section first presents a publicly available dataset and
implementation details. Following this, Using three classical
methods as a comparison, we verified the excellent performance
of our proposed method. Finally, ablation experiments are
conducted to determine module efficiency.

4.1 Datasets

The KAIST dataset is widely recognised in academia as a
benchmark evaluation standard for multispectral pedestrian
detection tasks. We chose to use this dataset mainly because it
contains a rich diversity of pedestrian images covering a variety of
complex scenarios including occlusions, multi-scale variations, and
different background conditions. This diversity allows us to validate
and evaluate the robustness and accuracy of the experimental results
in a more comprehensive way. The KAIST dataset covers two
viewpoints, i.e., the horizontal viewpoint and the top viewpoint.
The horizontal viewpoint dataset is collected from urban
environments and covers a variety of different scenes and
complex backgrounds. The top view angle dataset, on the other
hand, is taken from places such as school campuses and car parks,
and contains dense groups of pedestrians as well as complex
environmental backgrounds. In the training set of the KAIST
dataset, an image is captured every two frames, covering a total
of 25,086 images. The test set, on the other hand, captures an image
every thirty frames, totalling 2,252 images. Of these, the daytime test
set includes 1,455 images and the nighttime test set contains
797 images. To ensure fairness in comparing the results with our
competitors, In order to evaluate the results, we used all reasonable
subsets of scale and occlusion from the KAIST test dataset in [39].

4.2 Implementation details

This study used the Python version 3.8 and PyTorch 1.9.0 deep
learning framework located on Ubuntu 20.04 operating system. We
randomly initialised the network parameters, settings λ1 � 2,
λ2 � 0.4. Our inputs were KAIST dataset images of original size
640 × 512 without any resizing operations. We used the Adam
optimiser to train our proposed basic target detection network with
an initial learning rate of 0.005 and a default batch size of 32, and the
number of training periods was set to 100. We reduced the learning
rate by a factor of 10 when the training loss was no longer decreasing
and the validation accuracy was no longer improving. Subsequently,
we continued to reduce the learning rate by two times until we
eventually stopped training. All models were trained on GeForce

RTX 3090 GPUs from NVIDIA. To compare different models’
performance, evaluation metrics follow the standard KAIST
evaluation, where we used the log-averaged MR (FPPI) as the
evaluation metric, measured in the MR-2 interval in the
range [10−2, 100].

4.3 Comparison of research with
classical methods

We compared with ACF + T + THOG [39], Halfway Fusion [40],
FusionRPN + BDT [41], IAF R-CNN [42], IATDNN + IASS [43],
MSDS-RCNN [44], CIAN [45], MBNet [46] and LG-FAPF [47].
Comparison.We evaluated all the detection results on theKAIST test set.

As shown in Table 2, as in previous studies, we conducted
experiments on three main subsets (all-day, daytime, and nighttime)
as well as six other subsets under the “reasonable” setting, and
observed that our method demonstrated excellent performance. The
experimental the consequences show that our model is more
efficient able to perform multimodal data fusion with improved
speed and accurate detection.

In Figure 7, we present a comparison of our method with three
different state-of-the-art multispectral pedestrian detectors MSDS-
RCNN [44], MBNet [46] and LG-FAPF [47]. Our method is able to
successfully detect pedestrians in very low light or darkness and
effectively suppress human-like false alarms. This highlights that our
method has excellent robustness and accuracy in pedestrian
detection tasks. This means that we are better able to address the
challenges of pedestrian detection in complex scenes and provide
more reliable detection results.

The “reasonable” setting presents greater difficulties due to
increased occlusions and unclear images, particularly at night.
Figure 8 shows the FPPI-MR curves for the “reasonable” setting
on the KAIST dataset. The MR-FPPI plots of our proposed
multispectral pedestrian detection method are displayed alongside
those of other existing methods. In the range of [10−2, 100], the grey
curve consistently outperforms the blue curve. The results indicate
that our method is more accurate than the latest LG-FAPF method.
Table 2 further demonstrates the superiority of our approach.

4.4 Parameter sensitivity experiments

In order to verify the stability of the model to hyperparameters,
we conducted parameter sensitivity experiments on all-day dataset
under “reasonable” settings. We set the value of λ1 to {0.02, 0.2, 2, 20,
200} and the value of λ2 to {0.04, 0.4, 4, 40, 400}. As shown in
Table 3, the experimental results show that the proposed model can
get better detection results in larger parameter spaces. Specifically,
the values of λ1 and λ2 cannot be too large or too small, and the best
detection results are achieved when the value of λ1 is equal to 2 and
the value of λ2 is equal to 0.4.

4.5 Ablation studies

To authenticate the validity of the significance detection,
multiscale image feature fusion and illumination perception, we
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TABLE 2 An analysis of the KAIST dataset compares our method with nine representative state-of-the-art multispectral pedestrian detectors, using log-
averaged performance as the evaluation metric.

Methods KAIST (MR-2)

Reasonable Six subsets

All.day Day Night Near Medium Far None Partial Heavy

ACF + T + THOG [39] 46.48 40.57 54.17 28.63 51.71 85.57 54.69 70.49 81.50

Halfway Fusion [40] 27.07 25.88 28.59 8.01 30.69 74.57 47.44 61.17 72.04

FusionRPN + BDT [41] 19.91 16.67 21.38 0.12 30.87 84.42 40.57 46.66 70.46

IAF R-CNN [42] 15.87 14.55 18.26 1.02 23.12 71.16 41.65 46.48 63.03

CIAN [45] 14.92 14.77 16.13 3.71 19.04 55.82 30.31 41.57 62.48

IATDNN + IASS [43] 14.35 14.67 15.72 0.03 27.01 80.10 40.85 47.36 62.13

MSDS-RCNN [44] 9.61 9.09 10.92 1.26 16.13 67.36 31.22 37.67 60.62

MBNet [46] 8.52 8.28 9.86 0.00 16.07 55.99 27.74 35.43 59.14

LG-FAPF [47] 6.23 5.83 6.69 0.58 8.44 40.47 18.92 22.01 50.24

Ours 3.12 3.06 4.13 0.46 6.32 32.56 14.87 17.34 46.15

We tested the three main subsets (all-day, daytime, and nighttime) as well as six other subsets under “reasonable” settings. Bold indicates best in performance.

FIGURE 7
Comparisonwith three state-of-the-artmultispectral pedestrian detectors (MSDS-RCNN [44], MBNet [46], and LG-FAPF [47]) bymeans of a uniform
confidence threshold. The first series of columns shows the results of the reference pedestrian detection, which is performed on a visible image. The
other columns show the pedestrian detection results for different methods on visible images. Yellow boundary boxes indicate positive tags, red boundary
boxes indicate ignored tags, and green boundary boxes indicate false alarm tags. Adapted from KAIST Multispectral Pedestrian Detection
Benchmark, licensed under CC BY-NC-SA 4.0.
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carried out ablation experiments. The experimental results are
shown in Table 4.

Where, (I) denotes direct detection of visible images. (II) denotes
detection directly on infrared images. (III) denotes detection using
enhancement maps. (IV) denotes the addition of a multi-scale feature
fusion network to (III), at which point Pd and Pn are removed from the
loss function. Ours denotes the addition of an illumination-aware sub-
network to (IV), which is our complete network.

From (I) and (II), it is evident that pedestrian detection using visible
images performs better during the daytime, while infrared images

perform better at night. This highlights the limitations of relying on
a single modality for detection. The results of method (III) indicate that
the use of augmented images can significantly enhance pedestrian
detection effectiveness for the three subsets under the “reasonable”
settings. This is because the saliency detection can highlight
pedestrian features in the images. Method (IV) outperforms method
(III) by using a multi-scale image feature fusion network. It is also
possible to fuse the enhanced image and the visible image at high quality.
Therefore, our fusion network has been demonstrated to be effective.
Our results are better than those of method (IV) because the
illumination-aware subnetwork can adaptively fuse the two images
according to the ambient lighting conditions, which improves the
quality of the fused images as well as the final detection results.

5 Conclusion

In this paper, a novel multi-spectral pedestrian detection method is
proposed. Firstly, in this method, we use saliency detection technique to
enhance the pedestrian features in infrared images and successfully
solves the problem of inconspicuous pedestrian features in infrared
images during daytime; then, a multi-scale image feature fusion network
based on self-encoder is designed to effectively fuse different modal
features at the same scale, which improves the feature extraction
capability and the quality of image fusion; finally using an
illumination-aware sub-network, the problem of light imbalance is
solved, and meaningful information of the fused images is fused
around the clock. Numerous experimental results demonstrate that
our algorithm has excellent performance on the KAIST dataset.
Specifically, our algorithm improves the logarithmic mean leakage
rate (MR) by 3.11%, 2.77%, and 2.56% for three major subsets of
different time periods (all-day, daytime, and nighttime) under the
“reasonable” setting, respectively. Our results are significantly
improved compared to classical multispectral pedestrian detection
methods currently considered state-of-the-art. We aim to contribute
tomultispectral pedestrian detection advancement through our research.

In future work, we would further investigate finer image fusion
methods to better fuse the bimodal features and further improve the
detection performance. Meanwhile, we will also design lighter modules
to speed up pedestrian detection so that our method can be applied to
real-time scenarios. We hope that these developments will improve the
accuracy and efficiency of pedestrian detection andwill provide a reliable
and efficient solution for real-world implementations.
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FIGURE 8
The analysis of detection results was compared using the
KAIST dataset.

TABLE 3 Parameter sensitivity experiments on the KAIST all-day dataset.

KAIST All.day (MR-2)

λ1λ2 0.02 0.2 2 20 200

0.04 6.69 5.42 5.01 6.34 9.97

0.4 6.13 4.79 3.12 3.98 10.36

4 7.47 5.37 4.23 7.01 12.49

40 9.02 7.43 8.60 11.42 10.27

400 14.64 14.73 13.22 13.61 18.36

Bold indicates best in performance.

TABLE 4 Ablation experiments on the KAIST dataset.

Methods All day Day Night

(I) 24.79 19.71 36.55

(II) 20.91 26.54 14.89

(III) 15.39 18.21 7.66

(IV) 7.08 8.46 5.31

Ours 3.12 3.06 4.13
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