16 research outputs found

    Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia

    Get PDF
    ゲノム解析から急性赤白血病の変異プロファイルと治療標的を解明 --特定の遺伝子変異群の組み合わせと、特徴となる遺伝子の増幅が鍵--. 京都大学プレスリリース. 2022-08-05.Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome/exome and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains/amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains/amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL

    Highly Sensitive Method for Genomewide Detection of Allelic Composition in Nonpaired, Primary Tumor Specimens by Use of Affymetrix Single-Nucleotide–Polymorphism Genotyping Microarrays

    Get PDF
    Loss of heterozygosity (LOH), either with or without accompanying copy-number loss, is a cardinal feature of cancer genomes that is tightly linked to cancer development. However, detection of LOH is frequently hampered by the presence of normal cell components within tumor specimens and the limitation in availability of constitutive DNA. Here, we describe a simple but highly sensitive method for genomewide detection of allelic composition, based on the Affymetrix single-nucleotide–polymorphism genotyping microarray platform, without dependence on the availability of constitutive DNA. By sensing subtle distortions in allele-specific signals caused by allelic imbalance with the use of anonymous controls, sensitive detection of LOH is enabled with accurate determination of allele-specific copy numbers, even in the presence of up to 70%–80% normal cell contamination. The performance of the new algorithm, called “AsCNAR” (allele-specific copy-number analysis using anonymous references), was demonstrated by detecting the copy-number neutral LOH, or uniparental disomy (UPD), in a large number of acute leukemia samples. We next applied this technique to detection of UPD involving the 9p arm in myeloproliferative disorders (MPDs), which is tightly associated with a homozygous JAK2 mutation. It revealed an unexpectedly high frequency of 9p UPD that otherwise would have been undetected and also disclosed the existence of multiple subpopulations having distinct 9p UPD within the same MPD specimen. In conclusion, AsCNAR should substantially improve our ability to dissect the complexity of cancer genomes and should contribute to our understanding of the genetic basis of human cancers

    Efficacy and Safety of Treatment with Plasma from COVID-19-Recovered Individuals

    No full text
    Convalescent plasma therapy, which involves administering plasma from recovered coronavirus disease 2019 (COVID-19) patients to infected individuals, is being explored as a potential treatment for severe cases of COVID-19. This study aims to evaluate the efficacy and safety of convalescent plasma therapy in COVID-19 patients with moderate to severe illness. An open-label, single-arm intervention study was conducted without a control group. Plasma collected from recovered COVID-19 patients was administered to eligible participants. The primary endpoint was the proportion of patients who were placed on artificial ventilation or died within 14 days of transfusion. Secondary endpoints included clinical improvement, viral load measurements, and adverse event monitoring. A total of 59 cases were included in the study. The primary endpoint was evaluated by comparing the rate obtained in the study to an existing rate of 25%. The study also assessed clinical improvement, viral load changes, and safety endpoints through adverse event monitoring. Convalescent plasma therapy shows potential as a treatment option for COVID-19. This study aimed to provide evidence for the efficacy and safety of this therapy and may contribute to its future use in treating severe cases of COVID-19

    A Multi-Center, Open-Label, Randomized Controlled Trial to Evaluate the Efficacy of Convalescent Plasma Therapy for Coronavirus Disease 2019: A Trial Protocol (COVIPLA-RCT)

    No full text
    Background: Coronavirus disease 2019 is a global public health concern. As of December 2020, the therapeutic agents approved for coronavirus disease 2019 in Japan were limited to two drugs: remdesivir, an antiviral drug, granted a Special Approval for Emergency on 7 May 2020, and dexamethasone, which has an anti-inflammatory effect. The aim of this study is to evaluate the efficacy of convalescent plasma collected from donors who recovered from coronavirus disease 2019. Methods: This is an open-label, randomized controlled trial comprising two groups: a convalescent plasma and a standard-of-care group. Plasma administered to patients with coronavirus disease 2019 randomized in the convalescent plasma group of this trial will be plasma that has been collected and stored in an associated study. Patients with a diagnosis of mild coronavirus disease 2019 will be included in this trial. The efficacy of convalescent plasma transfusion will be evaluated by comparing the convalescent plasma group to the standard-of-care group (without convalescent plasma transfusion) with respect to changes in the viral load and other measures. The primary endpoint will be time-weighted average changes in the SARS-CoV-2 virus load in nasopharyngeal swabs from day 0 to days 3 and 5. It is hypothesized that the intervention should result in a decrease in the viral load in the convalescent plasma group until day 5. This endpoint has been used as a change in viral load has and been used as an index of therapeutic effect in several previous studies. Discussion: The proposed trial has the potential to prevent patients with mild COVID-19 from developing a more severe illness. Several RCTs of convalescent plasma therapy have already been conducted in countries outside of Japan, but no conclusion has been reached with respect to the efficacy of convalescent plasma therapy, which is likely in part because of the heterogeneity of the types of target patients, interventions, and endpoints among trials. Actually, previous clinical trials on plasma therapy have shown inconsistent efficacy and are sometimes ineffective in COVID-19 patients with severe disease, which is due to unmeasured neutralizing antibody titer in the COVID-19 convalescent plasma. To improve this issue, in this study, we measure neutralizing activity of convalescent plasma before administration and provide the plasma with high neutralizing activity to the subjects. It is hoped that this study will further evidence to support the role of convalescent plasma therapy in COVID-19
    corecore