1,567 research outputs found

    Excitation of f-modes during mergers of spinning binary neutron star

    Get PDF
    Tidal effects have important imprints on gravitational waves (GWs) emitted during the final stage of the coalescence of binaries that involve neutron stars (NSs). Dynamical tides can be significant when NS oscillations become resonant with orbital motion; understanding this process is important for accurately modeling GW emission from these binaries, and for extracting NS information from GW data. In this paper, we carry out a systematic study on the tidal excitation of fundamental modes of spinning NSs in coalescencing binaries, focusing on the case when the NS spin is anti-aligned with the orbital angular momentum-where the tidal resonance is most likely to take place. We first expand NS oscillations into stellar eigen-modes, and then obtain a Hamiltonian that governs the tidally coupled orbit-mode evolution. We next find a new approximation that can lead to analytic expressions of tidal excitations to a high accuracy, and are valid in all regimes of the binary evolution: adiabatic, resonant, and post-resonance. Using the method of osculating orbits, we obtain semi-analytic approximations to the orbital evolution and GW emission; their agreements with numerical results give us confidence in on our understanding of the system's dynamics. In particular, we recover both the averaged post-resonance evolution, which differs from the pre-resonance point-particle orbit by shifts in orbital energy and angular momentum, as well as instantaneous perturbations driven by the tidal motion. Finally, we use the Fisher matrix technique to study the effect of dynamical tides on parameter estimation. We find that the dynamical tides may potentially provide an additional channel to study the physics of NSs. The method presented in this paper is generic and not restricted to f mode; it can also be applied to other types of tide

    Excitation of f-modes during mergers of spinning binary neutron star

    Get PDF
    Tidal effects have important imprints on gravitational waves (GWs) emitted during the final stage of the coalescence of binaries that involve neutron stars (NSs). Dynamical tides can be significant when NS oscillations become resonant with orbital motion; understanding this process is important for accurately modeling GW emission from these binaries and for extracting NS information from GW data. In this paper, we use semianalytic methods to carry out a systematic study on the tidal excitation of fundamental modes (f-modes) of spinning NSs in coalescencing binaries, focusing on the case when the NS spin is antialigned with the orbital angular momentum—where the tidal resonance is most likely to take place. We first expand NS oscillations into stellar eigenmodes, and then obtain a Hamiltonian that governs the tidally coupled orbit-mode evolution. (Our treatment is at Newtonian order, including a gravitational radiation reaction at quadrupole order.) We then find a new approximation that can lead to analytic expressions of tidal excitations to a high accuracy, and are valid in all regimes of the binary evolution: adiabatic, resonant, and postresonance. Using the method of osculating orbits, we obtain semianalytic approximations to the orbital evolution and GW emission; their agreements with numerical results give us confidence in our understanding of the system’s dynamics. In particular, we recover both the averaged postresonance evolution, which differs from the preresonance point-particle orbit by shifts in orbital energy and angular momentum, as well as instantaneous perturbations driven by the tidal motion. Finally, we use the Fisher matrix technique to study the effect of dynamical tides on parameter estimation. We find that, for a system with component masses of (1.4,1.4) M_⊙ at 100 Mpc, the constraints on the effective Love number of the (2,2) mode at Newtonian order can be improved by a factor of 3 ∼ 4 if spin frequency is as high as 500 Hz. The relative errors are 0.7 ∼ 0.8 in the Cosmic Explorer, and they might be further improved by post-Newtonian effects. The constraints on the f-mode frequency and the spin frequency are improved by factors of 5 ∼ 6 and 19 ∼ 27, respectively. In the Cosmic Explorer case, the relative errors are 0.2 ∼ 0.4 and 0.7 ∼ 1.0, respectively. Hence, the dynamical tides may potentially provide an additional channel to study the physics of NSs. The method presented in this paper is generic and not restricted to f-mode; it can also be applied to other types of tides

    Revisiting the tidal excitation of Rossby modes in coalescing binary systems

    Get PDF
    Rossby modes (r-modes) of rotating neutron stars can be excited by the gravitomagnetic forces in coalescing binary systems. The previous study by Flanagan and Racine [Phys. Rev. D 75, 044001 (2007)] showed that this kind of dynamical tide (DT) can induce phase shifts of 0.1 rad on gravitational waveforms, which is detectable by third-generation (3G) detectors. In this paper, we study the impact of this DT on measuring neutron-star parameters in the era of 3G detectors. We incorporate two universal relations among neutron star properties predicted by different equations of state: (i) the well-known I-Love relation between momentum of inertia and (f-mode) tidal Love number, and (ii) a relation between the r-mode overlap and tidal Love number, which is newly explored in this paper. We find that r-mode DT will provide rich information about slowly rotating neutron stars with frequency ranging from 10 to 100 Hz. For a binary neutron star system (with a signal-to-noise ratio around 1500 in the Cosmic Explorer), the spin frequency of each individual neutron star can be constrained to 6% (fractional error) in the best-case scenario. The degeneracy between the Love numbers of individual neutron stars is dramatically reduced: each individual Love number can be constrained to around 20% in the best case, while the fractional error for both symmetric and anti-symmetric Love numbers are reduced by factors of around 300. Furthermore, DT also allows us to measure the spin inclination angles of the neutron stars, to 0.09 rad in the best case, and thus place constraints on NS natal kicks and supernova explosion models. Besides parameter estimation, we have also developed a semi-analytic method that accurately describes detailed features of the binary evolution that arise due to the DT

    Spin and eccentricity evolution in triple systems: From the Lidov-Kozai interaction to the final merger of the inner binary

    Get PDF
    We study the spin and eccentricity evolution of black-hole (BH) binaries that are perturbed by tertiary masses and experience the Lidov-Kozai (LK) excitation. We focus on three aspects. First, we study the spin-orbit alignment of the inner binary following the approach outlined by Antonini et al. [Mon. Not. R. Astron. Soc. 480, L58 (2018)] and Liu and Lai [Astrophys. J. 863, 68 (2018)], yet allowing the spins to have random initial orientations. We confirm the existence of a dynamical attractor that drives the spin-orbit angle at the end of the LK evolution to a value given by the initial angle between the spin and the outer orbital angular momentum (instead of to a specific value of the effective spin). Second, we follow the (inner) binary’s evolution further to the merger to study the final spin-spin alignment. We generalize the effective potential theory to include orbital eccentricity, which allows us to efficiently evolve the system in the early inspiral stages. We further find that the spin-spin and spin-orbit alignments are correlated and the correlation is determined by the initial spin-orbit angle. For systems with the spin vectors initially in the orbital plane, the final spins strongly disfavor an aligned configuration and could thus lead to a greater value of the GW recoil than a uniform spin-spin alignment would predict. Lastly, we study the maximum eccentricity excitation that can be achieved during the LK process, including the effects of gravitational-wave radiation. We find that when the tertiary mass is a supermassive BH and the inner binary is massive, then even with the maximum LK excitation, the residual eccentricity is typically less than 0.1 when the binary’s orbital frequency reaches 10 Hz, and a decihertz detector would be necessary to follow such a system’s orbital evolution

    Spin and eccentricity evolution in triple systems: From the Lidov-Kozai interaction to the final merger of the inner binary

    Get PDF
    We study the spin and eccentricity evolution of black-hole (BH) binaries that are perturbed by tertiary masses and experience the Lidov-Kozai (LK) excitation. We focus on three aspects. First, we study the spin-orbit alignment of the inner binary following the approach outlined by Antonini et al. [Mon. Not. R. Astron. Soc. 480, L58 (2018)] and Liu and Lai [Astrophys. J. 863, 68 (2018)], yet allowing the spins to have random initial orientations. We confirm the existence of a dynamical attractor that drives the spin-orbit angle at the end of the LK evolution to a value given by the initial angle between the spin and the outer orbital angular momentum (instead of to a specific value of the effective spin). Second, we follow the (inner) binary’s evolution further to the merger to study the final spin-spin alignment. We generalize the effective potential theory to include orbital eccentricity, which allows us to efficiently evolve the system in the early inspiral stages. We further find that the spin-spin and spin-orbit alignments are correlated and the correlation is determined by the initial spin-orbit angle. For systems with the spin vectors initially in the orbital plane, the final spins strongly disfavor an aligned configuration and could thus lead to a greater value of the GW recoil than a uniform spin-spin alignment would predict. Lastly, we study the maximum eccentricity excitation that can be achieved during the LK process, including the effects of gravitational-wave radiation. We find that when the tertiary mass is a supermassive BH and the inner binary is massive, then even with the maximum LK excitation, the residual eccentricity is typically less than 0.1 when the binary’s orbital frequency reaches 10 Hz, and a decihertz detector would be necessary to follow such a system’s orbital evolution

    An Invulnerability Algorithm for Wireless Sensor Network\u27s Topology Based on Distance and Energy

    Get PDF
    To improve the topological stability of wireless sensor networks, an anti-destructive algorithm based on energy-aware weighting is proposed. The algorithm takes the Weighted Dynamic Topology Control (WDTC) algorithm as a reference, and calculates the weight of nodes by using the distance between nodes and the residual energy of nodes. Then chooses optimal weights and constructs a stable balanced topological network with multiple-connectivity paths using the K-connection idea. The simulation results show that the proposed algorithm improves the average connectivity of the topological network, enhances the robustness of the network, ensures the stable transmission of network information, and optimizes the betweenness centrality of the network nodes, making the network has a good invulnerability
    corecore