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We study the spin and eccentricity evolution of black-hole (BH) binaries that are perturbed
by tertiary masses and experience the Lidov-Kozai (LK) excitation. We focus on three aspects.
Firstly, we study the spin-orbit alignment of the inner binary following the approach outlined by
Antonini et al. [1] and Liu and Lai [2], yet allowing the spins to have random initial orientations.
We confirm the existence of a dynamical attractor that drives the spin-orbit angle at the end of the
LK evolution to a value given by the initial angle between the spin and the outer orbital angular
momentum (instead of to a specific value of the effective spin). Secondly, we follow the (inner)
binary’s evolution further to the merger to study the final spin-spin alignment. We generalize the
effective potential theory to include orbital eccentricity, which allows us to efficiently evolve the
system in the early inspiral stages. We further find that the spin-spin and spin-orbit alignments are
correlated and the correlation is determined by the initial spin-orbit angle. For systems with the
spin vectors initially in the orbital plane, the final spins strongly disfavor an aligned configuration
and could thus lead to a greater value of the GW recoil than a uniform spin-spin alignment would
predict. Lastly, we study the maximum eccentricity excitation that can be achieved during the LK
process, including the effects of gravitational-wave radiation. We find that when the tertiary mass
is a super-massive BH and the inner binary is massive, then even with the maximum LK excitation,
the residual eccentricity is typically less than 0.1 when the binary’s orbital frequency reaches 10 Hz,
and a decihertz detector would be necessary to follow such a system’s orbital evolution.

I. INTRODUCTION

It has been suggested that a significant amount of bi-
nary black-hole (BH) mergers detectable by Advanced
LIGO (aLIGO; [3]) and Advanced Virgo (aVirgo; [4])
may happen in galactic nuclei [5–7] or in surrounding
gas disks [8–10]. The recent announcement by the Zwicky
Transient Facility [11] further strengthens this possibility.
In Ref. [11], the authors report a plausible electromag-
netic counterpart to a candidate binary BH merger in the
accretion disk of an active galactic nucleus, associating
it with aLIGO/aVirgo’s gravitational-wave (GW) event
GW190521 [12, 13].

The deep gravitational potential well in a galactic nu-
cleus enables the possibility of finding mergers involv-
ing second-generation (or even higher generation) BHs,
i.e., BHs that are themselves products of previous merger
events [14–16]. Such a high-generation BH may be pro-
duced by frequent stellar interactions thanks to the dense
stellar environment [17]. Alternative, if there are gas
disks around the SMBH, then migration traps may form
and cause massive objects to accumulate and collide with
each other [18]. A high-generation BH may be massive,
potentially exceeding the upper mass gap set by pair-
instability supernovae [19]. Moreover, such a BH likely
possesses significant spin angular momentum, inherited
from the residual orbital angular momentum (AM) of its
progenitor binary [20–24]. This is in contrast to BHs
born from stellar evolution, in which case small spins are
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expected [24, 25]. Ref. [11] suggests that the GW190521
event may have a total mass of ∼ 100M� and at least one
component is significantly spinning,1 two characteristics
consistent with BHs with dynamical origins as expected
in galactic nuclei.

Meanwhile, as a super-massive BH (SMBH) typically
resides in the galactic nucleus [26], binaries in the nucleus
might be further perturbed by the SMBH via, e.g, the
Lidov-Kozai (LK) mechanism [27, 28]. In this picture,
the SMBH acts as a tertiary perturber that causes the
inner binary to oscillate in its orbital inclination and ec-
centricity. As the pericenter separation decreases with in-
creasing eccentricity, the GW radiation becomes increas-
ingly more efficient. This allows the binaries to merge
more quickly and on timescales shorter than, e.g., the
age of the Universe or other survival timescales set by
local environments.

In fact, the LK mechanism has been considered to be
an important channel producing the mergers of binary
BHs and belongs to the family of dynamical formation
channels (see, e.g., Ref. [29] for a review of different for-
mation scenarios). Different authors have investigated
this problem in different context, ranging from galac-

1 During the preparation of this work, the LIGO parameter es-
timation on the GW190521 event was not ready and therefore
parameters suggested Ref. [11] were used. LIGO later reported
a more massive binary with component masses of (M1,M2) =
(85M�, 66M�) and both components may have potentially sig-
nificant spin. More importantly, there is a potentially significant
spin component in the orbital plane [12, 13]. These parameters
further strengthens the possibility of a dynamical origin of the
system.
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tic nuclei (e.g., [6, 7, 30–33]), to dense stellar clusters
(e.g., [34, 35]), to isolated field stars (e.g., [1, 2, 36–41]).

While most of the references above focus on the merger
window (i.e., the parameter space of initial conditions
that could lead to successful LK-induced mergers) and
the event rates, a few authors [1, 2, 39] suggest an-
other interesting aspect of the LK mechanism, namely,
its effect on the evolution of the spin vectors in the inner
binary. More specifically, Refs. [1, 2, 39] all report a dy-
namical attractor that drives each component’s spin into
the orbital plane at the end of the LK evolution. Conse-
quently, the effective spin parameter [the mass-weighted
sum of the component spins along the direction of the
orbital AM; see Eq. (44)] of the inner binary is attracted
towards zero. However, Refs. [1, 2, 39] assumed a spe-
cial initial condition where the spin vectors are aligned
with the inner orbit AM vector. This is a reasonable as-
sumption to make for triple systems in the field, where
such an alignment might be expected from stellar evo-
lution [42, 43]. It is unclear, however, whether such a
condition still holds for binaries formed near an SMBH
whose components are more likely to have dynamical ori-
gins. This motivates us to study, under more generic ini-
tial conditions, how the LK process affects the evolution
of the inner binary’s spin-orbit alignment. This is par-
ticularly relevant to GW190521, as significant spin may
be expected [11–13], and would improve our understand-
ing of a more generic class of mergers driven by the LK
mechanism.

In addition to the spin-orbit alignment, the spin-spin
alignment is also of particular interest in this study. Pre-
vious studies suggest that the post-Newtonian (PN) spin
evolution may play a significant role in shaping the fi-
nal distribution of this angle (e.g., Refs. [44–51]). While
this is not a leading-order post-Newtonian (PN) effect in
the inspiral stage, the spin-spin alignment nonetheless af-
fects the GW radiation during the final merger-ringdown
stage, and plays a crucial role in determining the GW re-
coil (also known as the GW kick; [45, 46, 52]). Properly
modeling this final stage is particularly important for a
system like GW190521, which is both intrinsically mas-
sive and appearing more massive in the detector frame
due to the large cosmological redshift, because the sig-
nal information content captured in the LIGO band is
dominated by the merger-ringdown stage [53]. This is
in contrast to the majority of previous LIGO detections,
which typically appear with a detector-frame total mass
of < 100M�, where the signal-to-noise is dominated by
the inspiral stage.

Consequently, in this study, we also investigate the evo-
lution of the spin-spin alignment. Particularly, how dif-
ferent initial conditions such as orbital eccentricity and
the initial spin-orbit alignment affect the final orientation
of the spin vectors. Since in the final evolution stages, the
binary effectively decouples from the tertiary perturber,
the LK process simply serves as a way of providing the
initial condition. Thus, our result has broader applica-
tions to other formation channels, provided one properly

substitutes in the initial conditions suitable for the for-
mation channel of interest.

The eccentricity is yet another interesting aspect that
we explore in this study, as it usually bears unique sig-
natures of a binary’s formation channel [35, 54–63], and
it is anticipated to be detectable by future space-based
GW observatories in the millihertz and decihertz bands
such as LISA [64], TianQin [65], and TianGO [66]. This
motivates investigating the limiting eccentricity that can
be excited by the LK mechanism and the observational
consequences for future space-based and ground GW de-
tectors.

The rest of the paper is organized as follows. In
Sec. II A we outline the basic formalism of the problem.
In the remainder of Sec. II, we apply the formalism to
studying the spin evolution during the LK evolution. Our
approach is similar to Ref. [2] but with a key extension
in the form of sampling the initial spins isotropically. In
Sec. III we further evolve the systems after the LK ex-
citation, which specify the binary initial conditions, and
follow the binary’s evolution onward to the final merger.
This is done by first generalizing the precession-averaged
evolution for circular orbits proposed by Ref. [67] to al-
low for orbital eccentricity in Sec. III A. We study the
final spin distributions in Sec. III C and its relation to
GW kicks in Sec. III D. We then consider the limiting
eccentricity excitation by the LK mechanism in Sec. IV.
Lastly, we summarize our results in Sec. V. Throughout
this paper we use geometrical units with G = c = 1.

II. EVOLUTION OF THE SPIN-ORBIT
ALIGNMENT DURING THE LIDOV-KOZAI

OSCILLATION

In this Section we study the dynamics of an inner bi-
nary (consisting of masses M1 and M2 with M1 ≥M2 in
an orbit with semi-major axis ai) perturbed by a tertiary
mass M3 that is in an outer orbit with semi-major axis
ao via the Lidov-Kozai (LK) oscillation.

Our focus is to examine how the spin vectors of the
inner binary evolve with respect to the inner orbital AM.
Specifically, we want to examine if the attraction towards
χeff = 0 reported in Refs. [1, 2, 39] still holds if we ran-
domize the initial spin orientation. According to Ref. [2],
the attraction is most significant for triple systems that
experience multiple “clean” LK cycles. In other words,
the interaction is dominated by the quadrupole interac-
tion potential. The octupole effects are naturally small
when the tertiary mass is an SMBH, because the con-
dition ao � ai is required in order for the triple to be
dynamically stable [6, 68]. Consequently, we truncate
the LK interaction at the quadrupole order in this work.

Given the complications of the environment near an
SMBH, we do not attempt to make any predictions on
the LK-induced event rates in this study.

In Sec. II A we review the basic formalism of the stan-
dard LK problem and in Sec. II B we provide some an-
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alytical solutions under the simplifications that the in-
teraction is truncated at the quadrupole order and the
GW decay is neglected. Additional corrections due to an
SMBH are discussed in Sec. II C. We present our numer-
ical simulations in Sec. II D. Our study in this Section
closely follows Ref. [2] (see also Refs. [1, 39]), with a key
modification, namely, that we allow the initial orienta-
tions of the spin vectors to be drawn isotropically, rather
than fixing them along the direction of the AM of the
inner orbit. As evident in Sec. II D, this has a significant
consequence on the final distribution of χeff .

A. Formalism

We start our discussion here by presenting the key
equations of the “standard” LK interactions. Corrections
due to an SMBH are discussed in Sec. II C.

The secular evolution of the inner orbit can be specified
by 4 vectors, Li, ei, S1, and S2, corresponding to the
orbital AM of the inner orbit, the eccentricity vector2,
and the spin vectors associated with masses M1 and M2,
respectively. These vectors are further specified by a set
of ordinary differential equations as

dLi

dt
=
dLi

dt

∣∣∣
LK

+
dLi

dt

∣∣∣
GW

+
dLi

dt

∣∣∣
dS

+
dLi

dt

∣∣∣
LT
, (1)

dei

dt
=
dei

dt

∣∣∣
LK

+
dei

dt

∣∣∣
GR

+
dei

dt

∣∣∣
GW

+
dei

dt

∣∣∣
dS

+
dei

dt

∣∣∣
LT
,

(2)

dS1,2

dt
=
dS1,2

dt

∣∣∣
dS

+
dS1,2

dt

∣∣∣
LT
, (3)

where in the subscripts we have used “LK”, “GR”,
“GW”, “dS”, and “LT” to respectively stand for the
Lidov-Kozai (LK) interaction, the (conservative) general-
relativistic apsidal precession, the (dissipative) GW radi-
ation, the de Sitter, and the Lense-Thirring precessions.
When coupled to the outer orbit via the LK mechanism,
the above set of equations gives the complete description
of the system’s dynamics. Next, we examine each of these
terms more closely.

We start with the LK interaction, which together with
the Keplerian motion of the inner and outer orbit (i.e.,
all the Newtonian parts), can be jointly described by a
Hamiltonian (see, e.g., Ref. [69]; see also Ref. [70] for a
more recent review) of the form

H =
1

2
µi|ṙi|2 +

1

2
µo|ṙo|2 −

M1M2

ri
− MtM3

ro
+ ΦLK. (4)

Here, ri = rir̂i and ro = ror̂o are the inner and outer
orbital separations, respectively, while the hats denote

2 It has a direction pointing from the apocenter to the pericenter
and its amplitude is equal to the eccentricity. This is equivalent
to the Laplace-Runge-Lenz vector divided by Mµ2.

unit vectors. We have also defined µi = M1M2/Mt and
µo = MtM3/(Mt +M3), the reduced masses of the inner
and outer orbits, respectively, where Mt = M1+M2 is the
total mass of the inner orbit. For conciseness, we some-
times drop the subscript “i” for quantities describing the
inner orbit. To avoid any confusion, quantities related to
the outer orbit retain the subscript “o” throughout this
paper.

The quantity ΦLK describes the tidal potential of the
tertiary mass expanded around the center of mass of the
inner orbit and it is given by

ΦLK =−M1M2M3

∑
l=2

M l−1
1 + (−1)lM l−1

2

M l
t

× rli
rl+1
o

Pl (r̂i · r̂o) , (5)

where in the second line, Pl is the Legendre polynomial
of degree l. Note that the octupole term is significantly
suppressed when M3 is an SMBH as dynamical stabil-
ity [6, 68] requires ro/ri � 1 (the system we focus on
in Sec. II D has ao/ai ' 10−4, about 100 − 103 times
smaller than what is allowed for triples in the field with
M3 ∼M1). More importantly, as our goal is to study the
spin attractor under “clean” LK interactions [2], we focus
solely on the leading order quadrupole (l = 2) term.

To efficiently evolve the system, one typically uses the
orbital-averaged (i.e., the secular) version of the inter-
action potential ΦLK. Specifically, one may average over
both the inner and outer orbits (i.e., the double-averaged,
or DA, approximation), which leads to

〈〈ΦLK〉〉
∣∣∣
l=2

=
µM3a

2

8a3
o(1− eo)3/2

×
[
1− 6e2 − 3(1− e2)

(
L̂ · L̂o

)2

+ 15e2
(
ê · L̂o

)2
]
,

(6)

where Lo and eo are the orbital angular momentum and
eccentricity vectors of the outer orbit, and they can be
jointly evolved with the inner orbit’s quantities to solve
for the dynamics of the hierarchical triple system. Due
to the LK interaction, the inner eccentricity and mutual
orbital inclination oscillates at a characteristic rate ΩLK,
given by

ΩLK =
M3

Mt

(
a

ao

√
1− e2

o

)3√
Mt

a3
. (7)

When the inner orbit’s eccentricity e is near its maximum
with e ' 1, the eccentricity varies on a timescale τLK

given by [71]3

τLK =
Mt

M3

(
ao

√
1− e2

o

a

)3√
a3(1− e2)

Mt
. (8)

3 For future convenience, we do not define τLK as 1/ΩLK. Instead,
we define τLK =

√
1− e2/ΩLK.



4

If this timescale is longer than the period of the outer
orbit, we are safely in the DA regime. Otherwise, one
should only average over the inner orbit (the single-
averaged, or SA, approximation), leading to

〈ΦLK〉
∣∣∣
l=2

=
µM3a

2

4r3
o

×
[
−1 + 6e2 + 3(1− e2)

(
L̂ · r̂o

)2

− 15 (ê · r̂o)
2

]
. (9)

Once the Hamiltonian is specified, one can easily ob-
tain the equations of motions for both the inner and outer
orbits. The explicit forms are provided in Appx. A (See
also Ref. [72] for the DA case and Ref. [2] for the SA
case).

As the LK oscillation excites a large eccentricity in
the inner orbit, it greatly reduces the instantaneous GW
decay timescale τgw, defined by

τgw ≡
a

|ȧ|
=

5

64

a4

µM2
t

(1− e2)7/2(
1 + 73

24e
2 + 37

96e
4
) . (10)

Hence, an initially widely separated system may be able
to merge in a reasonable amount of time due to GW
radiation when (1− e2)� 1. As pointed out by Ref. [2]
(see also Ref. [36]), the total LK-induced merger time can
be approximated by

τm = τgw|e=0

(
1− e2

max

)3
, (11)

where emax is the maximum eccentricity reached during
the LK cycle [which is further explored in Eq. (26) and
Sec. IV].

To incorporate the GW decay, we have

dL

dt

∣∣∣
GW

= −32

5

µ2M
5/2
t

a7/2

(
1 + 7

8e
2
)

(1− e2)
2 L̂, (12)

de

dt

∣∣∣
GW

= −304

15

µM2
t

a4

(
1 + 121

304e
2
)

(1− e2)
5/2

e. (13)

Note that the above equations preserve the relation that

L = µ
√
Mta (1− e2). (14)

In addition to the dissipative decay, GR also induces a
conservative apsidal precession as

de

dt

∣∣∣
GR

= ΩGR × e, (15)

where

ΩGR =
3Mt

a(1− e2)
ΩorbL̂, (16)

with Ωorb =
√
Mt/a3.

In order to study the evolution of spin orientation, we
further incorporate the de Sitter (1.5 PN) and Lense-
Thirring (2 PN) precessions according to Ref. [73], as

well as the quadrupole-monopole interaction according
to Ref. [74]

dS1

dt
=
(
Ω

(S1)
dS + Ω

(S1)
LT + Ω

(S1)
QM

)
× S1, (17)

and similarly for S2. These also induce back-reactions
on the orbit (denoted with a subscript “br”) as

dL

dt

∣∣∣
dS+LT+QM

=
(
Ω

(S1)
dS,br + Ω

(S2)
dS,br + ΩLT,br

+Ω
(S1)
QM,br + Ω

(S2)
QM,br

)
×L (18)

de

dt

∣∣∣
dS+LT+QM

=
(
Ω

(S1)
dS,br + Ω

(S2)
dS,br + ΩLT,br

+Ω
(S1)
QM,br + Ω

(S2)
QM,br

)
× e. (19)

The different Ω’s are given by

Ω
(S1)
dS =

3 (M2 + µ/3)

2a (1− e2)
ΩorbL̂ =

(4 + 3M2/M1)L

2a3(1− e2)3/2
L̂,

(20)

Ω
(S1)
LT =

S2

2a3 (1− e2)
3/2

[
Ŝ2 − 3

(
L̂ · Ŝ2

)
L̂
]
, (21)

Ω
(S1)
QM =

S1

2a3 (1− e2)
3/2

M2

M1

[
Ŝ1 − 3

(
L̂ · Ŝ1

)
L̂
]
, (22)

Ω
(S1)
dS,br =

S1 (4 + 3M2/M1)

2a3 (1− e2)
3/2

[
Ŝ1 − 3

(
L̂ · Ŝ1

)
L̂
]
, (23)

ΩLT,br = − 3S1S2

2a3 (1− e2)
3/2

L

×
{(
L̂ · Ŝ1

)
Ŝ2 +

(
L̂ · Ŝ2

)
Ŝ1

+
[
Ŝ1 · Ŝ2 − 5

(
L̂ · Ŝ1

)(
L̂ · Ŝ2

)]
L̂
}
, (24)

Ω
(S1)
QM,br = − 3S2

1

4a3(1− e2)3/2L

M2

M1

×
{

2
(
L̂ · Ŝ1

)
Ŝ1 +

[
1− 5

(
L̂ · Ŝ1

)2
]
L̂

}
(25)

Quantities with a superscript of (S2) can be obtained
from those with (S1) by switching subscripts (1↔ 2).

B. Analytical approximations to conservative
systems

The above set of differential equations describe the dy-
namics of the triple system and can be solved numeri-
cally. Nonetheless, it is also instructive to consider the
analytical solutions of the system under certain approx-
imations. Specifically, if one ignores the GW decay and
truncates the interaction potential at the quadrupole or-
der [Eq. (5)], then the maximum eccentricity of the in-
ner orbit emax can be obtained as a function of the ini-
tial (which we define as the moment when the system is
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nearly circular) inclination I(0) (i.e., the angle between
Li and Lo) as [34, 72, 75]

3(jmin + 1)

8jmin

[
ε2brj

4
min −

(
3 + 4εbr cos I(0) +

9

4
ε2br

)
j2
min

+5
(

cos I(0) +
εbr

2

)]
+ εGR = 0, (26)

where jmin ≡
√

1− e2
max and

εGR = 3

(
Mt

a

)(
Mt

M3

)(
ao

√
1− e2

o

a

)3

, (27)

εbr =
L(e = 0)

Lo
=

µ

µo

[
Mt

(Mt +M3)

a

ao (1− e2
o)

]1/2

.

(28)

The limiting eccentricity ẽlim = max
{
emax

[
I(0)

]}
is

obtained when

cos I
(0)
lim =

εbr
2

(
4

5
j̃2
lim − 1

)
, (29)

with j̃lim ≡
√

1− ẽ2
lim, by solving

3

8
j̃lim

(
j̃lim + 1

) [
−3 +

ε2br

4

(
4

5
j̃2
lim − 1

)]
+ εGR = 0.

(30)
Under the limit that the back-reaction factor εbr � 1
and 1− ẽ� 1, we can simplify the equation as

1− ẽlim '1.9× 10−5

(
Mt

150M�

)4 ( a

3 AU

)−8

×
(

M3

109M�

)−2
(
ao

√
1− e2

o

0.06 pc

)6

, (31)

and the limiting merger timescale associated with ẽlim is
given by [Eq. (11)]

τ̃m,lim '2.3× 101 yr

×
(

Mt

100M�

)10(
µ

25M�

)−1 ( a

3 AU

)−20

×
(

M3

109M�

)−6
(
ao

√
1− e2

o

0.06 pc

)18

. (32)

We show a few representative curves of the maximum
eccentricity under the conservative approximation, and
the corresponding merger timescale calculated accord-
ing to Eq. (11) in Fig. 1. Here we assume the triple
system has masses of (M1,M2,M3) = (55, 45, 109)M�.
We denote the initial semi-major axes of the inner and

outer orbits as a
(0)
i and ao, respectively, and use three

different line styles to represent three sets of separations

(we use dashed, solid, and dotted lines for [a
(0)
i , ao] =

{30 AU, 0.6 pc}, {3 AU, 0.06 pc}, {0.3 AU, 6 × 10−3 pc},
respectively). Lastly, we use the color grey (olive) to

10-5

10-4

10-3

10-2

1
−
ẽ

m
a
x

84 86 88 90 92 94 96
I (0) [ ◦ ]

103

106

109

τ̃ m
 [

yr
]

DA regime
SA regime

[a
(0)
i , ao] = (30, 0.6)

[a
(0)
i , ao] = (3, 0.06)

[a
(0)
i , ao] = (0.3, 6× 10−3)

θS3Lo
= 5 ◦

θS3Lo
= 45 ◦

FIG. 1. Top panel: the maximum eccentricity that can be
excited during the LK oscillation as a function of the initial
inclination I(0) under the conservative (i.e., no GW radia-
tion), quadrupole approximation [Eq. (26)]. Bottom panel:
the corresponding merger timescale [Eq. (11)]. Here we have
focused on a system with (M1,M2,M3) = (55, 45, 109)M�

and three different sets of
[
a

(0)
i , ao

]
(indicated by different

line styles). We have fixed the eccentricity of the outer orbit
to be eo = 0 for the cases. Also shown in the dots are the
results obtained from numerical simulations including SMBH
corrections (blue for θS3Lo = 5◦ and orange for θS3Lo = 45◦,
where θS3Lo is the inclination of Lo with respect to S3). The
pile-up of eccentricity at 1−emax ' 10−4 and the merger time
at τm ' 3× 103 yr are explained in Sec. IV.

represent systems that are in the DA (SA) regime. Note

that the maximum eccentricity varies with respect to a
(0)
i

even if we keep the ratio a
(0)
i /ao a constant.

Note that the derivation so far is for a conservative
system only, and we use a tilde symbol to denote the
associated quantities. We revisit the limiting eccentricity
in Sec. IV to take into account the effect of GW radiation.

C. Effects associated with an SMBH

In addition to the “standard” LK equations presented
in Sec. II A, there are additional corrections that may be
important when the tertiary perturber is an SMBH [6].
In this section, we discuss these effects.

One of the most significant effects associated with an
SMBH is that Lo and eo may experience a 1.5-PN pre-
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cession around S3 (the spin vector of M3) as4

dLo

dt

∣∣∣
S3Lo

= ΩS3LoŜ3 ×Lo, (33)

deo

dt

∣∣∣
S3Lo

= ΩS3Lo

[
Ŝ3 − 3

(
L̂o · Ŝ3

)
L̂o

]
× eo, (34)

where the precession rate is given by

ΩS3Lo
=
S3 (4 + 3Mt/M3)

2a3
o(1− e2

o)3/2
,

' 3.7× 10−3ΩLK

(
S3

M2
3

)(
M3

109M�

)−1

×
(

Mt

100M�

)1/2 ( a

3 AU

)−3/2

. (35)

Note that in the second line we measure ΩS3Lo
in terms

of LK precession rate, ΩLK [Eq. (7)], to compare the
relative importance of the two effects. As we focus on
inner binaries that are less compact than those studied
in Ref. [6], this effect is less significant in our case.

Similarly, S3 also causes L1, S1, and S2 to precess
around it [in analog to Eq. (21)] as

dLi

dt

∣∣∣
S3Li

= ΩS3Li

[
Ŝ3 − 3

(
L̂o · Ŝ3

)
L̂o

]
×Li. (36)

The equations for S1 and S2 can be easily obtained by
replacing L by S1(2). The three vectors precess at the
same rate,

ΩS3Li
=

S3

2a3
o (1− e2

o)
3/2
' 1

4
ΩS3Lo

. (37)

Therefore, this effect does not directly alter the angle
between S1 and Li.

Nevertheless, the combination of the above two effects
introduces extra variations on the directions of Lo and Li

relative to each other, which enables a greater eccentric-
ity excitation at a given initial inclination I(0) and typ-
ically broadens the LK merger window. Similar effects
can also be generated by a non-spherical mass distribu-
tion of the ambient star cluster [32, 33], or in the context
of field stars, by a quadruple system [40, 76].

We demonstrate the significance of this effect numer-
ically in Fig. 1 with the dot markers. When the an-
gle between S3 and Lo, θS3Lo

, is small (blue dots with
θS3Lo

= 5◦; the azimuthal angle between the two vec-
tors is set randomly), the eccentricity and merger time
matches well the analytical approximation [Eq. (26)].5

4 This is in analog to how Li precesses around S1 (and S2). See
Eq. (23). Note that whereas Li/S1 � 1, we have Lo/S3 '
5 × 10−4 if S3 ' M2

3 , and consequently, the precession of S3

around Lo [analog of Eq. (20)] can be safely ignored.
5 The numerically found merger times are slightly shorter than

Eq. (11) as Eq. (11) is only a semi-analytical approximation that
captures the key scalings. Also note that the eccentricity piles
up at 1 − emax ' 10−4 and does not reach the limiting values
computed in Eq. (31), similarly for the merger time. This is ex-
plained in Sec. IV when we take into account the GW radiation.

Indeed, if Lo is parallel to S3, Eq. (33) vanishes while
Eq. (36) reduces to an extra precession of Li around Lo

without providing additional changes in the nutation. On
the other hand, when the misalignment is significant (or-
ange dots with θS3Lo = 45◦), we see more scattering of
the numerical results. A greater eccentricity allows a bi-
nary to merge in a smaller number of LK cycles. It is
thus expected to degrade the dynamical attractor, which
we examine in more detail in Sec. II D.

Additionally, both S1 (and S2) and Li experience de-
Sitter (or a de-Sitter-like) precession around Lo [in ana-
log to Eq. (20)].

dS1

dt

∣∣∣
LoS1

= ΩLoS1
L̂o × S1, (38)

dLi

dt

∣∣∣
LoLi

= ΩLoLiL̂o ×Li, (39)

where the precession rates are

ΩLoS1 =ΩLoLi =
3 (M3 + µo/3)

2ao(1− e2
o)

√
M3

a3
o

,

=0.12ΩLK

(
M3

109M�

)1/2 [
ao(1− e2

o)

0.06 pc

]1/2

×
(

Mt

150M�

)1/2 ( a

3 AU

)−3/2

. (40)

Note that this effect does not directly affect the angle
between S1 and Li, which is the focus of our study here.
Thus, despite that ΩLoLi

> ΩS3Lo
, it is subdominant

compared to the extra precessions around S3.

D. Numerical simulations

Having outlined the set of equations we evolve and
their approximate, analytical solutions, we now exam-
ine the full numerical evolution of a population of triple
systems undergoing the LK excitation. Here we directly
integrate the differential equations outlined in Sec. II A
and Appx. A using an explicit Runge-Kutta method of
order 5(4) [77]. We developed our own code in PYTHON
using standard NumPy [78] and SciPy [79] packages and
optimized using NUMBA [80].6

Motivated by Ref. [11], we consider a relatively massive
inner binary with masses (M1,M2) = (55M�, 45M�)

and initial separation a
(0)
i = 3 AU. The tertiary per-

turber is assumed to be an SMBH of mass M3 = 109M�
with separation ao = 0.06 pc. The outer orbit is further
assumed to be circular. Additionally, we assume the two
BHs of the inner binaries each have significant spins, i.e.

6 The code is available from the corresponding author on reason-
able requests.
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χ1 = χ2 = 0.7, where

χ1,2 ≡
S1,2

M2
1,2

. (41)

When Lense-Thirring precessions around S3 are included
(Sec. II C), we fix S3 = M2

3 or χ3 = 1 to maximize its
potential consequences. We remind the reader that we
are focused on studying the spin distribution under the
LK interaction, similar to the study of Refs. [1, 2, 39],
but with a key difference in that we allow the initial di-
rection of the spin vectors to be isotropic and random
(independent of the inner orbital plane’s orientation), as
one may expect if the binary has a dynamical origin as
suggested by Refs. [11–13]. We do not attempt to make
any predictions on the event rate in this study.

To get a population, we uniformly sample the initial
inclination of the inner orbit I(0). Here, the initial in-
stant is defined when the inner orbit is nearly circular

with e
(0)
i = 10−3. The value of I(0) then determines the

merger timescale τm [see, Eqs. (11) and (26)]. Although a
natural choice is to only retain systems with τm . 10 Gyr
(the approximate age of the Universe), we note that an
inner binary in a dense stellar environment like a galac-
tic nucleus may not be able to survive for such a time.
For example, the binary may evaporate due to dynamical
interactions with environmental stars on a timescale [81]

τev ' 1× 107 yr

(
Mt

100M�

)( ai

3 AU

)−1

×
( σ?

350 km s−1

)( m?

10M�

)−1(
ρ?

107M� pc−3

)−1

,

(42)

where σ? and ρ? are the local velocity dispersion and stel-
lar mass density, and m? is the mass of a typical object
in the local environment. Another potentially limiting
timescale is the two-body relaxation timescale [82],

τ2b ' 5× 108 yr
( σ?

350 km s−1

)3

×
(

m?

10M�

)−1(
ρ

107M� pc−3

)−1

. (43)

We point interested readers to Ref. [30] and references
therein for detailed discussions on different timescales
that may be relevant. Here we simply choose a merger
window of τm < 108 yr for systems evolved using the
DA equations. Despite seeming somewhat arbitrary, our
choice is justified, as once τm > (a few) × τ̃m,lim,7 the
distribution is insensitive to τm.

To compare the effect of orbital averaging, we evolve
the triple system using both the DA and SA equations.

7 In fact, τm should be compared to the minimum of τ̃m,lim and
τm,lim; see Sec. IV and Eq. (69)

For the DA systems, we select systems that have τm <
108 yr as argued above. As the SA equations are more
computationally expensive, we consider only those with
τm < 3 × 107 yr (see Fig. 1). In total, we simulate 2000
(1800) DA (SA) systems.

We terminate the three-body interaction when the in-
ner semi-major axis shrinks by a factor of 10, ai =

a
(0)
i /10. At this point, τLK � τgw and the inner bi-

nary is well decoupled from the tertiary perturber. In
the remainder of this section, we focus on examining the
properties of the inner binary after decoupling from the
third body. The properties of the binary once it enters
the LIGO band are studied in detail in Sec. III.

We examine two cases. First, we examine results ob-
tained under the “clean” LK without various SMBH ef-
fects as described in Sec. II C (this also corresponds to
the case where Lo is parallel to S3). The second is with
SMBH corrections, using the DA approximation. In the
second case, we focus on two representative values of
θS3Lo , a small value of θS3Lo = 5◦ and a larger value
of θS3Lo = 45◦, while the azimuthal angle between Lo

and S3 is sampled uniformly.
To summarize, in our numerical simulations we fix the

masses of the triple to (M1,M2,M3) = (55, 45, 109)M�,
the spin magnitude of each component to (χ1, χ2) =

(0.7, 0.7), and the initial separations to (a
(0)
i , ao) =

(3 AU, 0.06 pc). The quantities we randomize are the ori-
entation of S1 and S2 (isotropically), as well as the initial
inclination of the inner orbit with respect to the outer
one, I(0) (uniform in angle). When considering correc-
tions due to effects associated with the central SMBH, we
fix S3 = M2

3 and consider two representative angles be-
tween Lo and S3 (θS3Lo

= 5◦ or 45◦). We further select
only systems with τm < 108 yr (3× 107 yr) to be evolved

using the DA (SA) equations until ai = a
(0)
i /10 = 0.3 AU.

In total we simulate 2000 (1800) realizations with the DA
(SA) equations. The focus of our study here is to un-
derstand how the LK excitation affects the inner orbit’s
spin-orbit alignment and the distribution of the effective
spin, χeff , defined as

χeff =
M1χ1 · L̂+M2χ2 · L̂

M1 +M2
. (44)

In the top panel of Fig. 2 we present a scatter plot
of χeff as a function of the merger time.8 We use grey
(olive) dots to represent systems evolved using the DA
(SA) equations. With randomized initial spin directions,
we do not see χeff attracted toward 0, even for systems

8 Note that in the top panel, there is a cluster of points piled up
at the vertical line of τm ' 2.5 × 103. This is ∼ 100 times
longer than the limiting merger time one would expect for a
conservative system as shown in Eq. (32). This is due to the fact
that the limiting eccentricity can be smaller than the prediction
of Eq. (31) if the inner orbit decays rapidly due to GW radiation.
This is discussed further in Sec. IV.
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FIG. 2. Top panel: effective spin χeff distribution as a func-
tion of the LK induced merger time τm. The grey and olive
dots represent systems evolved with the DA and SA equations,
respectively. SMBH effects are ignored in this case. Bot-
tom panel: the distribution of the effective spins for systems
that experience multiple LK cycles before the eventual merger
(i.e., with τm & 5 × 103 yrs). For reference, the cyan trace
corresponds to the initial distribution of χeff with isotrop-
ically oriented spins. Lastly, the orange trace corresponds
to the distribution of χeff with SMBH effects incorporated for
θS3Lo = 45◦. Note that in both panels we express the effective
spin as χeff normalized by the maximum effective spin allowed
in the simulations, namely, max|χeff | = 0.7. To generate the
distribution, we use 1605 DA runs, 1112 SA runs, and 1287
runs including the SMBH effects after the cut τm & 5×103 yrs
cut.

that experience multiple “clean” LK cycles with merger
times greater than 5 × 103 yr and without being per-
turbed by various SMBH effects. Rather, the effective
spin has a distribution consistent with that expected from
an isotropic spin direction, as shown in the lower panel
of Fig. 2.

Nevertheless, there still exists a dynamical attractor of
the spin orientation. This is illustrated in Fig. 3 where
we present a sample evolution track of the inner binary
under multiple LK cycles (without SMBH effects). From
the top to bottom, we show, respectively, the semi-major

axis, the eccentricity, and the spin-orbit alignment of the
inner orbit, θS1(2)L. We see that at the end of the LK evo-
lution, the angles between the spin vectors and the inner
orbital angular momentum, θS1(2)L, converge to fixed val-
ues, which correspond to the anglea between the initial

spin vectors and the AM of the outer orbit, θ
(0)
S1(2)Lo

.

In fact, this attraction holds generically as shown in
Fig. 4. In the top panel of Fig. 4 we show, as a func-
tion of merger time, the ratio of | cos θS1L| at the end

of the LK evolution to the initial value of | cos θ
(0)
S1Lo
|.

Note, in the figure we have added a small value of
0.01 to the denominator to avoid numerical singularities.
Whereas those that merge in essentially a single LK cy-
cle (τm ' 2.5× 103 yr) present a large scattering for the
value of this ratio, systems with τm & 5 × 103 yr (i.e.,
experiencing multiple LK cycles) concentrate around a
value of unity. Although we limit the presentation to S1,
this same relation holds true for the orientation of S2.

Further, if we cast cos θS1L as a function of sin θ
(0)
S1Lo

,
then a clear bifurcation pattern appears, as shown in the
bottom panel of Fig. 4.

Qualitatively, this may be understood by generalizing
the argument given in Ref. [2] (see their sec. 4.3). Specif-
ically, in a frame that rotates together with L around Lo

(indicated by a subscript “rot”), the evolution of S1 may
be approximated as

dS1

dt

∣∣∣
rot
' Ωeff × S1, (45)

where

Ωeff = Ω
(1)
dS + ΩstdLK. (46)

The vector ΩstdLK is further given by

ΩstdLK =
3L̂ · L̂o(1 + 4e2)

4τLK
L̂o. (47)

One may argue that the angle between S1 and Ωeff is
an adiabatic invariant if |Ωeff | is slow varying. Initially

|ΩstdLK| � |Ω(1)
dS | when the inner binary is widely sepa-

rated, but as the orbit decays, at the end of the LK cycle

the opposite is true |ΩstdLK| � |Ω(1)
dS |. This then implies

that

θS1L ' θ
(0)
S1Lo

. (48)

Note, however, that the argument does not explain why

we can also have θS1L ' π−θ
(0)
S1Lo

from numerical simula-
tions, hence a more rigorous understanding of the process
is needed in a future study.

From this, we now see that the attraction to χeff ' 0
for systems experiencing multiple “clean” LK cycles as
reported in Refs. [1, 2, 39] is a consequence of their choice
of initial conditions. The aformentioned studies focus on
systems whose spin vectors are initially aligned with the

inner AM vector, θ
(0)
S1Lo

= I(0). In order for the inner
binary to be excited to a large enough eccentricity that
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FIG. 3. A representative case of an inner binary’s evolu-
tion during the LK induced oscillations with (M1,M2,M3) =

(55, 45, 109)M�, a
(0)
i = 3 AU, ao = 0.06 pc and I(0) = 88.7◦.

From the top to bottom, we show the semi-major axis ai, the
eccentricity ei, the spin-orbit alignment θSL of the inner orbit,
and the comparison of the GW decay timescale and the in-
verse of LK frequency [Eqs. (10) and (7)] respectively. In the
third panel, the dotted lines correspond to the initial angles
between the spin vectors and the outer orbit’s orbital angular
momentum Lo.

it merges within 10 Gyr, the inner AM vector is further
required to have an initial inclination of I(0) ' π/2 with
respect to the outer orbit. The bottom panel of Fig. 4
illustrates that such systems with sin I(0) ' 1 lead to
cos θS1L ' 0 and consequently χeff ' 0 at the end of the
LK interaction.

104 105 106 107

Merger Time [yr]

0.1

1

10

|c
o
sθ
S

1
L
|/
[ |co

sθ
(0

)
S

1
L

o
|+

0.
01
] DA

SA

0.0 0.2 0.4 0.6 0.8 1.0

sinθ
(0)
S1Lo

1.0

0.5

0.0

0.5

1.0

co
sθ
S

1
L

FIG. 4. Top panel: the ratio between the spin-orbit align-
ment at the end of the LK oscillation, | cos θS1L|, and the ini-
tial alignment between spin and the outer orbit’s angular mo-

mentum, | cos θ
(0)
S1Lo
|. The two quantities are nearly equal for

systems experiencing multiple LK oscillations. Bottom panel:
here we focus on only those systems with τm ≥ 5 × 103 yrs,
which are those with multiple LK oscillations, displaying a
clear relationship between the final angle between S1 and the
binary angular momentum L versus the initial angle between
S1 and the outer angular momentum Lo.

While an initial alignment between S1 and L may be
expected for field triples (which are the focus of Refs. [1,
2, 39]), it is unclear if this assumption holds for binaries in
galactic nuclei. If the spin vectors do not have a preferred
direction initially,9 then the LK evolution does not lead
to a preferred value of χeff (relative to the isotropic spin
distribution) in general.

We conclude this section by briefly examining the ef-
fects due to an SMBH [6]. As argued in Sec. II C, we

9 We note that our isotropic spin prior may be an oversimplifi-
cation to the problem, as other dynamical processes, such as
gas torques in the disk of an active galactic nucleus (see, e.g.,
Refs. [8–11]), could also affect the initial spin orientation. Here
we ignore these gaseous effects, leaving this to future studies.
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FIG. 5. The distribution of the ratio between | cos θS1L| at

the end of the LK evolution and | cos θ
(0)
S1Lo
| initially. The

grey trace corresponds the “standard” LK (or θS3Lo = 0),
consistent with the grey dots in the upper panel of Fig. 4. The
blue and orange traces show the distributions when SMBH
effects are included at two representative values: θS3Lo = 5◦

and 45◦, respectively. The azimuthal angle between Lo and
S3 is randomly sampled and all data points are presented,
including those merging in a single LK cycle.

expect the effect to be mild corrections to the “stan-
dard” LK interactions for the set of parameters we fo-
cus on. This is demonstrated in Fig. 5, where we com-

pare the distributions of | cos θS1L| and | cos θ
(0)
S1Lo
| with

and without SMBH effects. Indeed, we see good agree-
ment overall between the different data sets. When the
Lo−S3 misalignment is significant (the orange trace with
θS3Lo = 45◦), there is a slight hint of the attractor be-
ing degraded, as more systems experience more extreme
eccentricity excitation and merge in fewer LK cycles (see
also Fig. 1). Nevertheless, since the distribution of χeff is
already consistent with that obtained from an isotropic
spin distribution, due to the initial condition we have as-
sumed on the spins, we do not expect SMBH effects to
change this result. This is confirmed through the results
presented in the bottom panel of Fig. 2. This conclu-
sion should be further strengthened for binaries that are
more compact and closer to an SMBH, where its effects
are more significant, as Ref. [6] showed that for a nearly
fixed initial spin orientation, the final χeff distribution
tends to be more broad than the isotropic-spin case.

III. SPIN-SPIN EVOLUTION FOR BINARIES
WITH ARBITRARY ORBITAL ECCENTRICITY

In this Section, we take those binaries that have un-
dergone LK oscillations (those we studied in Sec. II) as
the initial conditions and continue evolving the inner bi-
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FIG. 6. The distribution of the product ΩLKτgw [Eqs. (7) and

(10)] at the end of the LK evolution ai = a
(0)
i /10 of our simu-

lations. For the majority of the systems, we have ΩLKτgw < 1
satisfied and therefore the inner binary is effectively decoupled
from the tertiary perturber.

naries until merger, with the goal of studying the final
orientation of the spin vectors. A quantity we are partic-
ularly interested in is the angle between two spin vectors,
θS1S2

. While this angle is a subdominant effect in the in-
spiral GW waveform, it nonetheless plays a significant
role in determining the final merger-ringdown waveform
and the GW kick the system receives at the merger (see,
e.g., Refs. [45, 46, 50, 52]).

Note that at this point all binaries have a separa-

tion of ai = a
(0)
i /10 = 0.3 AU, which is the criterion

for terminating the three-body LK evolution. At this
point, the tidal torque for the tertiary mass to perturb
is much smaller compared to the initial value. Moreover,
the inner binary inspirals with an increasingly shorter
timescale. As we show in Fig. 6 (see also the bottom
panel of Fig. 3), for the majority of our simulations we
have ΩLKτgw < 1, and consequently, the inner binary has
is decoupled from the perturber and the LK interaction
terms can be safely disregarded.10

10 We acknowledge that there are about 15% of the systems shown
in Fig. 6 that do not meet the ΩLKτgw < 1 condition because
they experience a weak LK excitation and merges in more than
107 years [cf. Eq. (42)]. We do not evolve the triple system
further because that would make the majority of the systems
run into the computationally expensive regime caused by the
fast de Sitter precession of the inner spins. Nonetheless, one can
show ΩLKτgw ∝ a3 when (1 − e) < 1 and by a ' 0.1 AU '
105Mt all the systems will satisfy ΩLKτgw < 1. Moreover, the
LK evolution only provides initial conditions for the subsequent
binary evolution but will not affect any relations between various
spin alignments which are the focus of Sec. III. With or without
the ΩLKτgw ∝ a3 when (1 − e) > 1 systems, we find the spins
are consistent with an isotropic distribution at the end of the LK
evolution.
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Nonetheless, a new computational challenge appears.
Note that both the de Sitter precession and the Lense-
Thirring precession are of lower PN orders than the 2.5
PN GW-driven decay. In fact, we have

τgwΩdS ∝ a3/2(1− e2)5/2. (49)

One may further show that (1 − e2) ' 2(1 − e) ∝ 1/a
when (1 − e) � 1, a condition that is typically true at
the end of the LK evolution. Consequently we have

τgwΩdS ∝

{
a−1 if (1− e)� 1,

a3/2 if e� 1.
(50)

Therefore, the precession phase is largely dominant at
the time when the binary has e ∼ 0.5. This typically oc-
curs at a ' 3×10−3 AU for the binaries we consider here.
A brute-force approach at evolving the set of differential
equations outlined in Sec. II A requires a large number of
precession cycles be resolved, making this approach pro-
hibitively expensive computationally. Therefore, if we
want to explore how the initial conditions affect the fi-
nal spin orientation, a more efficient way of evolving the
system is desired.

To do so, we rely on the effective potential description
and the precession-averaged orbital evolution proposed
by Ref. [67]. The derivation of Ref. [67] is for circu-
lar orbits only, whereas the binaries considered here that
merge via the LK mechanism (as well as other dynam-
ical channels) typically have a large eccentricities. In
the following Sec. III A we generalize the effective poten-
tial theory to binaries with arbitrary eccentricity. Addi-
tionally, we provide a prescription for evolving an eccen-
tric system in a precession-averaged way. We apply this
generalized theory to evolve our binaries from 0.3 AU to
300Mt ' 3 × 10−4 AU in Sec. III B. As the binary fur-
ther evolves, the precession timescale can become greater
than the decay timescale and it cannot be treated in the
averaged manner. In consideration of this, we evolve the
full equations from 300Mt until merger (which we define
as a = 6Mt, corresponding to the inner-most stable cir-
cular orbit, or ISCO, of a Schwarzschild BH with mass
Mt). The final spin distribution is studied in details in
Sec. III C. Finally, in Sec. III D, we demonstrate how the
spin distribution affects the magnitude of the GW kick a
binary receives at merger.

Before proceeding, we remind the reader that at this
stage the inner binary has well decoupled from the ter-
tiary perturber, and the LK interaction merely provides
the initial conditions for the binary evolution. Therefore,
in addition to studying the marginalized distributions,
we also examine binaries obtained from specific slices of
initial conditions. As long as a formation channel (not
restricted to the LK mechanism) allows for the same slice
of initial conditions, our conclusions apply generically.

A. Effective spin potential and precession-averaged
evolution

We review here the effective potential theory proposed
by Ref. [67] and generalize to orbits with arbitrary eccen-
tricity, so that the theory can be applied to eccentric bi-
naries that dynamical formation channels (including the
LK oscillation we study here) typically produce.

To proceed, we note that the key foundation of the
derivation in Ref. [67] is that the effective spin param-
eter χeff [Eq. (44)] is preserved to at least the 2.5 PN
order. In fact, this is true even for eccentric orbits (see,
e.g., Ref. [74]). This, together with some geometrical re-
lations, allows us to express the angles between different
vectors as

cos θLJ =
J2 + L2 − S2

2JL
, (51)

cos θS1L =
1

2(1− q)S1

[
J2 − L2 − S2

L
− 2qM2

t χeff

1 + q

]
,

(52)

cos θS2L =
q

2(1− q)S2

[
−J

2 − L2 − S2

L
+

2M2
t χeff

1 + q

]
,

(53)

cos θS1S2 =
S2 − S2

1 − S2
2

2S1S2
, (54)

cos ∆Φ =
cos θS1S2

− cos θS1L cos θS2L

sin θS1L sin θS2L
, (55)

where in the above equations J = |L+ S| is the magni-
tude of the total angular momentum of the binary and
S = |S1 +S2| is the magnitude of total spin. We use θLJ

to represent the angle between L and J and ∆Φ the angle
between S1 and S2 in the orbital plane. Since the angles
are based on geometrical relations between different vec-
tors, they hold independent of the orbital eccentricity, as
long as one uses the proper J and L for eccentric orbits.

The effective potential is also a geometrical relation. It
describes, for a given set (J, L) together with constants
(Mt, q, S1, S2, χeff), the allowed range of the total spin
magnitude S can take. Specifically, the range is deter-
mined by solving the equation χ±eff(S±)|J,L = χeff , where

χ±eff(S)|J,L =
1

4qM2
t S

2L

{
±(1− q2)A1A2A3A4

+
(
J2 − L2 − S2

) [
S2(1 + q)2 − (S2

1 − S2
2)(1− q2)

]}
,

(56)

with

A1 =
√
J2 − (L− S)2, A2 =

√
(L+ S)2 − J2,

A3 =
√
S2 − (S1 − S2)2, A4 =

√
(S1 + S2)2 − S2.

The roots S± then defines the allowed range of S as S− ≤
S ≤ S+.
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Within this range, the total spin magnitude varies at
a rate (see Appendix B for derivation)

dS

dt
=− 3(1− q2)

2q
η6
(
1− e2

)3/2
(
M2

t

L

)5
S1S2

MtS

×
[
1− ηM2

t χeff

L

]
sin θS1L sin θS2L sin ∆Φ, (57)

where η = M1M2/M
2
t . Note that when e = 0, this re-

duces to eq. (8) in Ref. [67]. Also, note that dS/dt is
specified in terms of (J, L, e, S) and there is no explicit
time dependence. Additionally, we define a precession
timescale, τpre, as

τpre(J, L, e) = 2

∫ S+

S−

dS

|dS/dt|
. (58)

We now have all the ingredients to perform the
precession-averaged evolution. Note that dJ/dt ∝ L and

for the amplitudes we can write dJ/dt = Ĵ · dJ/dt and

dL/dt = L̂ · dJ/dt. Thus, we have dJ = cos θLJ dL.
Over a time ∆t with τpre � ∆t � τGW, we write the
precession-averaged evolution of J in terms of L as〈

dJ

dL

〉
=

2

τpre

∫ S+

S−

cos θLJdS

|dS/dt|
. (59)

Note that this is formally the same as eq. (10) in Ref. [67],
except the precession rate dS/dt now also depends on the
eccentricity [Eq. (57)]. The right-hand side of Eq. (59) is
now fully specified in terms of (J, L, e).

Similarly, we cast the precession-averaged eccentricity
evolution in terms of L by simply dividing (the scalar
version of) Eqs. (13) and (12) and substitute a in terms
of (L, e) using Eq. (14), leading to〈

de

dL

〉
=

19

6

e

L

1 + 121
304e

2

1 + 7
8e

2
. (60)

This completes the set of precession-averaged equations.
In Fig. 7 we compare the precession-averaged evolu-

tion of J (blue-solid trace) and the full numerical re-
sult (grey traces; it contains ∼ 104 precession cycles in
the range shown). Also shown in the blue dashed traces
are the upper and lower envelopes of dJ/dL evaluated at
cos θLS(S∓). Note that in Fig. 7 the x-axis correspond-
ing to the eccentricity of the system is inverted so that
left to right corresponds to a decaying orbital separation
and an increasing orbital frequency. From Fig. 7, we see
that the averaged evolution matches well with the full
numerical result.

We summarize the procedure for performing the
precession-averaged evolution as follows. Given a set
of initial conditions for (J, L, e), together with a set of
constant parameters (Mt, q, S1, S2, χeff), one can obtain
the averaged orbital evolution in terms of L by solving
{〈dJ/dL〉, 〈de/dL〉} using Eqs. (59) and (60). While in

0.20.40.60.8
e

0

2

4

6

8

10

12

[1
−

(d
J
/
d
L

)]
×

1
0

4

Precession Averaged
Full Numerical

1031
2forb [mHz]

FIG. 7. The evolution of the total angular momentum of
the inner binary J = |L + S|, with respect to the its orbital
angular L, as a function of the orbital eccentricity. Note that
we have inverted the bottom-x-axis so that the system evolves,
naturally, toward smaller values of e.

this process we lose track of the exact value of S, we nev-
ertheless know its probability density function for each
system with (J, L, e) given by

p(S|J, L, e) =
2

τpre

1

|dS/dt|
. (61)

To get the distribution of an ensemble, we simply sum the
distribution for each system together and then perform
an average

p(S) =
1

N

∑
p(S|J, L, e), (62)

where N is the number of systems in the ensemble.11 The
probability density of any function f of S

(
and (J, L, e)

)
is described as

p [f(S)|J, L, e] =
p(S|J, L, e)
|df/dS|

. (63)

This allows us to, e.g., compute the distribution of dif-
ferent angles as shown in Eqs. (51)-(55).

In the following Section (Sec. III B) we apply this tech-
nique to evolve systems from the end of the LK oscillation
to a = 300Mt and study the resulting distributions.

11 Here, each realization of our simulation has the same weight.
However, an extension that allows for different weights is
straightforward to implement in this framework.
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B. Evolving to a = 300Mt

Among all the systems we obtain from the LK evolu-
tion, we focus specifically on those with |χeff | < 0.1 for
the remainder of this paper (about 500 DA systems and
450 SA systems after the cut). The reasons for this re-
striction are as follows. First, while we have shown the
LK mechanism does not provide an attractor to χeff = 0
once the initial spin orientation is randomized, a small
χeff is nonetheless geometrically favorable for isotropic
spin orientations (see Fig. 2). Furthermore, spins in the
orbital plane (for which χeff ' 0 is a necessary condition)
is one of the conditions required to produce a particularly
strong GW recoil (see, e.g., Ref. [83]). To further explore
this configuration, we also consider a set of systems where

we require not only |χeff | < 0.1, but also θ
(0)
S1,2Lo

= π/2

initially (including 1200 DA and 1200 SA runs in total).

As the LK interaction favors θS1,2L ' θ
(0)
S1,2Lo

= π/2, this

means each individual spin will mostly lie in the orbital
plane at the end of the LK cycles.

In Fig. 8 we show the distributions of (S, θS1L, θS1S2
)

in the (top, middle, bottom) panel, for the data set where
only |χeff | < 0.1 is required (each individual spin vector
does not necessarily lie in the orbital plane for this case).
Here the solid-grey and solid-olive traces are the distribu-
tions at the end of the LK interaction (which we defined
as a = 0.3 AU) for those evolved numerically using the
DA and SA equations. The dashed-cyan curves are the
probability densities reconstructed using each individual
system’s (J, L, e) at a = 0.3 AU according to Eqs. (61)
and (63), summed together using Eq. (62). To get the
dashed-purple traces, we first evolve the (J, e) of each
system as a function of L, using the precession-averaged
method outlined in the previous Section, from 0.3 AU to
300Mt ' 3 × 10−4 AU, and then reconstruct the proba-
bility density. Fig. 8 shows that the reconstructed distri-
bution matches well with the numerical results. Further-
more, for this data set, we do not observe a significant
change in the distribution from 0.3 AU to 300Mt. Note
that in the bottom panel it appears that the spins prefer
to be anti-aligned. This is, however, a simple geometrical
effect rather than a dynamical consequence of evolution.
Intuitively, if S1 is an angle of α above the orbital plane,
S2 needs to be at least α below the orbital (for q ' 1)
in order to meet the χeff ' 0 requirement. Thus the two
vectors need to be at least 2α apart, which explains why
a large spin-spin angle is seemingly preferred.

Fig. 9 shows more interesting results for the evolution
of the data set where we further restrict each spin to
initially lie in the orbital plane. The traces of this fig-
ure retain the same definitions as those in Fig. 8. As
one would expect, initially θS1L peaks at π/2 and θS1S2

is essentially a uniform distribution. Fig. 9 shows that,
as the system evolves, the distribution of θS1L broadens
and θS1S2

begins to disfavor smaller values, indicating the
spin-spin interaction affects the distribution. In fact, the
dynamical effects are increasingly important as the inspi-
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FIG. 8. From top to bottom, the probability densities of
the total spin magnitude S, the spin-orbit angle θS1L, and
the spin-spin angle θS1S2 . The solid traces are the distribu-
tions based on our numerical simulation at the end of the LK
evolution (a = 0.3 AU). Here we focus on those systems with
|χeff | < 0.1, which includes about 500 (450) DA (SA) systems
after the cut. The dashed traces are reconstructed probabil-
ity densities based on {J, L, e} and the effective potential of
S. The cyan traces are evaluated at a = 0.3 AU and the pur-
ple traces at a = 300Mt (with (J, e) evolved first using the
precession-averaged method).

ral continues, which we study in detail in the following
Section.

C. Final distribution of the spin-spin alignment

The precession-averaged description provides an effi-
cient way to evolve the binary when the separation is
wide and we have τpre � τgw. As the orbit decays fur-
ther, the separation in timescales is less well satisfied. In
addition, the precession averaging ignores the spin-orbit
resonances [50, 51, 67], which might become significant
at small separations. As a result, from 300Mt to 6Mt

we evolve the full set of precession equations outlined in
Sec. II A.

Note that as we average over precession, we do not
keep track the exact value of S anyone. To do the full
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FIG. 9. Similar to Fig. 8, but in addition to |χeff | < 0.1,

we further require that θ
(0)
S1(2)Lo

= π/2 initially. This initial

condition means that at the end of the LK evolution (a =
0.3 AU), the spins vectors are approximately in the orbital
plane with θS1(2)L ' π/2. We specifically evolve 1200 DA and
1200 SA systems to increase the sample size here. Note that
as the systems evolve from 0.3 AU to 300Mt, the distribution
of θS1L broadens and θS1S2 begins to disfavor smaller valued
angles.

precession-resolved evolution, we need to first reconstruct
the initial conditions at 300Mt from the averaged evo-
lution results. This is accomplished by first randomly
choosing a set (J, L, e) from the numerical data at 300Mt

and sampling S according to Eq. (61). Once S is deter-
mined, we obtain the angles between different vectors
according to Eqs. (51)-(55), allowing us to construct the
necessary vectors.12

A representative evolution track from 300Mt to 6Mt

is shown in Fig. 10. In this figure, we plot different
quantities as functions of the GW frequency, which is
simply fgw = 2forb as the eccentricity has effectively
decayed away.13 in Fig. 10, from top to bottom, re-

12 The orientation of the eccentricity vector is set by requiring
e · L = 0. The initial angle between e and S affects only the
evolution of ê, not any other quantities, therefore it can be set
randomly.

13 At 300Mt the median eccentricity of systems in our simulation
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FIG. 10. An example of a binary evolution from 300Mt to
6Mt as a function of the GW frequency fgw(= 2forb as the
system has circularized). The top panel shows the evolu-
tion of various angles in degrees and the middle panel shows
the cosine of the angles. Note that (cos θS1L +K cos θS1S2)
(purple line) stays approximately constant until a time near
the merger. In the bottom panel we compare the GW decay
timescale τgw and the precession timescale τpre.

spectively, we show the angles between different vectors,
their cosines, and the relevant timescales. Note that the
precession timescale τpre [Eq. (58)] can become compa-
rable or even greater than the orbital decay timescale
τgw [Eq. (10)], indicating the necessity of performing a
precession-resolved evolution in the last stages of the in-
spiral (see also Appx. C to remove the bias that would
be induced on p(S) when τgw < τpre). In the remainder
of this section, we focus in detail on the dynamics of the
spin orientations.

We first focus on the distributions of different angles
θS1L, θS2L, and θS1S2

at 6Mt showm in Fig. 11. There,
the orange contours (including 8000 realizations) corre-

is e = 0.008, and at 6Mt all of the systems have e < 0.01 . See
also Figs. 17 and 18.
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FIG. 11. The distribution of spin-orbit and spin-spin alignment at a separation a = 6Mt. The olive contours represent all the
systems with |χeff | < 0.1 after the LK evolution (the initial conditions are shown in Fig. 8; including 8000 realizations in total).
The grey contours further restricts the set to include only those that satisfy χ1p ' χ2p ' 0.7 at the end of the LK evolution
(initial conditions from Fig. 9; including 5000 realizations). Note that for the grey contours, the final spin vectors tend with
θS1S2 disfavors strongly the aligned state, and it peaks at around 80◦. The grey contours also show clear correlations between
different angles. While the correlation between θS1L and θS2L is simply a consequence of χeff ' 0, the interesting correlation
between θS1L and θS1S2 is explained by the nearly conserved quantity of Eq. (64).

spond to the distribution with initial conditions drawn
according to Fig. 8. In other words, the orange contours
represent the systems starting from an isotropic spin dis-
tribution and then with the condition |χeff < 0.1| im-
posed. Additionally, we show for comparison, grey con-
tours (including 5000 realizations) corresponding to the

distribution obtained from the initial condition given by
Fig. 9, where we further restrict the spins to be initially

in the orbital plane (by setting θ
(0)
S1Lo

= θ
(0)
S2Lo

= π/2 as
the initial condition for the LK evolution).

At first glance, the orange contours appear to be simi-
lar to the initial conditions shown in Fig. 8. Furthermore,



16

104 105 106 107

Merger Time [yr]

0

50

100

150
θ S

1
S

2
 [
◦

]

0 50 100 150
θS1S2

 [ ◦ ]

0.000

0.002

0.004

0.006

0.008

0.010

p
(θ
S

1
S

2
)

τm > 106 yr

τm 106 yr

FIG. 12. Top panel: scattering plot of the final angle between
spin vectors θS1S2 as a function of the merger time. Bottom
panel: distribution of θS1S2 for data with τm > 106 yr (grey)
and with τm ≤ 106 yr (olive). Both plots indicate that there
is no significant correlation between the spin-spin angle and
the merger time.

we do not find a significant dependence of θS1S2 on the
merger time as shown in Fig. 12 [see also Eq. (11). Note
that the merger time is closely related to the maximum
eccentricity excited by the LK mechanism].

Nevertheless, if we instead focus on specific slices of
data, specified by a small range of values of the in-plane
spin components χ1p ≡ χ1 sin θS1L,14 then certain evolu-
tionary effects become clearer, as shown in Fig. 13 (see
also, e.g., Ref. [44]). In Fig. 13, we compare the angle
distributions at 6Mt (solid-grey) and at 300Mt (dashed-
olive) for different values of χ1p evaluated at 300Mt.
While the olive traces are consistent with the distribu-
tion one would get by starting from an isotropic spin dis-
tribution restricted to a particular range of χeff and χ1p,
the grey traces are nonetheless the results of dynamical

14 Unlike χeff which is conserved through the evolution, the in-plane
spin component χ1(2)p is a time-dependent quantity. As such,
we explicitly state the time at which it is evaluated whenever
referring to χ1(2)p.
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FIG. 13. The distribution of θS1S2 at 6Mt (solid-grey traces)
and at 300Mt (dashed-olive traces). The top panel shows
the distribution marginalized over χ1p and the bottom three
panels show the distribution corresponding to a narrow range
of χ1p (evaluated at 300Mt).

interactions. Specifically, we see that for χ1p > 0.695,
the final spin vectors disfavor to be aligned, which is also
demonstrated by the grey contoured data set in Fig. 11.
Similarly, Fig. 11 shows that the spin-orbit angle θS1(2)L

is also affected by these interactions. While the grey data
set has θS1(2)L peaking at π/2 initially, spins out of the
orbital plane are favored at merger. More specifically,
the more massive component slightly favors θS1L < π/2
while the less massive one favors θS2L > π/2.

A closely related observation is the significant correla-
tion between θS1L and θS1S2 shown by the grey contours
in Fig. 11. In fact, this correlation exists not only for
those systems with χ1p ' 0.7, or θS1L ' π/2 initially
at 300Mt, but for different values of χ1p generically, as
indicated in Fig. 14.

In the top panel of Fig. 14, we show a scatter plot
of θS1S2

and θS1L. The points are colored according to
the value of χ1p at 300Mt. Note that each set scatters
around a line corresponding to

C ≡ cos θS1L +K cos θS1S2
= Const, (64)



17

where15

K ≡ S2

(1− q)L
. (65)

Here, K has a well-defined value at 6Mt, as e < 10−2,
and evaluates to K|a=6Mt

= 1.3.
The above relation is a direct consequence of the fact

that J2 and L2 are constants at 2 PN. Specifically,
one may first express cos θS1L and cos θS1S2

in terms of
(J, L, S) using Eqs. (52) and (54), and then find a linear
combination of them that eliminates S2, the only variable
at 2 PN. It turns out that Eq. (64) is exactly the appro-
priate linear combination. Hence, this relation explains
the observed correlation. In fact, even when we take into
account the 2.5 PN dynamics (including the decay of J
and L; see Appx. D for a detailed discussion, including
the special case where q = 1), the quantity C still stays
approximately as a constant until the final merger.

The constant nature of C is also demonstrated numer-
ically in the middle panel of Fig. 10, where we show
Eqs. (64) in the purple trace. While both cos θS1L (grey
trace) and cos θS1S2 (olive trace) are oscillatory, the pur-
ple trace remains very well a constant until the last pre-
cession cycle (fgw & 3 Hz). Close to the final merger, our
assumption of Eq. (D11) breaks down, which explains the
the deviation of C away from its constant value.

Nevertheless, this is sufficient to explain why the top
panel of Fig. 14 show a clear dependence on the ini-
tial value of χ1p (which determines sin θS1L and hence
cos θS1L). It also explains why in the bottom panel of
Fig. 14, the purple dots demonstrate a clear positive cor-
relation between C = cos θS1L + K cos θS1S2

at 6Mt and
the initial value of cos θS1L at 300Mt.

16

D. Kick velocity distribution

The angle between the two spin vectors θS1S2
as well

as its projection onto the orbital plane ∆Φ plays a signif-
icant role in determining the final merger product. Here
we consider one aspect of the merger that is influenced by
spins, namely, the distribution of the GW kick velocity
vk.

It has been shown that the maximum recoil velocity
scales as (see, e.g, Ref. [52])

max [vk,z] ∝ |χ2p cos ∆Φ− qχ1p|, (66)

where the subscript z indicates that the kick is along the
direction of the orbital AM. This means an anti-aligned
spin configuration (which is preferred from our spin evo-
lution) could lead to a greater kick than the aligned case.

15 Here we have assumed q 6= 1 which is the case for our simulations.
The analog expression for q = 1 is given in Appx. D, Eq. (D6)

16 They are not equal to each other because of the deviation shown
in the middle panel of Fig. 10.
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FIG. 14. Top panel: a scatter plot of cos θS1S2 vs. cos θS1L

at the ISCO. The points are from the olive samples in Fig. 11.
We color the points according to the initial values of χ1p at
300Mt. Each group follows a correlation given by Eq. (64)
(solid lines). Bottom panel: various quantities at 6Mt as a
function of the cosine of the initial (a = 300Mt) spin-orbit
angle cos θS1L. Note that the quantity C [Eq. (64)] at 6Mt

shows a clear positive correlation with respect to the initial
value of cos θS1L.

To further demonstrate this point, we compute the
recoil distributions for two different spin configurations.
One is from our evolutionary model. Specifically, we take
the olive samples from Fig. 11, and further selecting those

systems satisfying
(
χ2

1p + χ2
2p

)2
> 0.68 at a = 6Mt. As

shown in the second row of Fig. 13, this set prefers a large
angle between the two spins spins and strongly disfavors
an aligned configuration. In terms of the in-plane angle
∆Φ, only 10% of the systems have ∆Φ < 90◦ after ap-
plying the χ1p > 0.68 cut. The second set we consider
is those systems with χeff = 0 and χ1(2)p = χ1(2) = 0.7,
and with a uniform distribution on ∆Φ. The spins are
specified at 6Mt with a randomized orbital phase and
the final recoil velocity is obtained from a GW surrogate
model [84, 85].

The result of the above procedure is shown in Fig. 15.
In this figure, the grey trace corresponds to our evolu-
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FIG. 15. Distribution of the GW kick velocity vk. The
grey trace is obtained from samples in Fig. 11 (i.e., fol-
lowing binary evolution), restricted to those systems with(
χ2

1p + χ2
2p

)1/2
> 0.68 at 6Mt. For comparison, the olive

trace is the kick velocity distribution for systems with the
same χeff ' 0 and χp ' 0.7, but with a uniform distribu-
tion of ∆Φ at 6Mt. While both distributions are broad and
consistent with the 200 km s−1 value suggested by Ref. [11],
the evolutionary model favors a “stronger” kick (peaking at
around 1800 km s−1) than the model with a uniform ∆Φ prior.

tionary models and the olive trace corresponds to the
reference model with uniform ∆Φ. Whereas the model
with uniform ∆Φ peaks at vk ' 250 km s−1, the evolu-
tionary model peaks at a much higher kick velocity of
vk ' 1800 km s−1. On the other hand, the evolution-
ary model still has a non-negligible likelihood to find a
small kick velocity like the 200 km s−1 value suggested by
Ref. [11].

Lastly, we conclude this Section by re-emphasizing that
whereas we focus on systems experiencing a significant
LK evolution initially, the final distribution of spin-spin
angle θS1S2

holds in a more generic context. This is be-
cause the orbit has essentially circularized at 300Mt, and
the final spin-spin alignment shows no obvious depen-
dence on the eccentricity excitation (Fig. 12). The LK
evolution simply provides an initial distribution of χeff

and χ1(2)p. However, if certain values of χeff and χ1(2)p

are known (e.g., from the inspiral waveform), we can pro-
duce a relevant posterior distribution, as in Fig. 15, by
restricting the systems to those consistent with the pro-
vided χeff and χ1(2)p values.

IV. LIMITING ECCENTRICITY OBTAINED
DURING THE LK OSCILLATION

Having discussed the final spin distributions exten-
sively in the previous Section, we now return to our dis-
cussions on the LK evolution, with a specific focus on the
maximum achievable eccentricity. Here, we revisit the

discussion in Sec. II B, now also including the affects of
dissipative GW radiation. In this Section we also exam-
ine the detectability of the orbital eccentricity by ground
and space-based GW detectors.

Note that in Sec. II B (which follows closely Refs. [2,
72, 75]), we consider the limiting eccentricity for conser-
vative systems, denoting the associated quantities with a
tilde. An interesting feature of the results is that 1− ẽlim

depends sensitively on the semi-major axes of both the
inner and outer orbits [see Eq. (31)].

However, such an eccentricity is not achieved instan-
taneously, but instead occurs over a timescale character-
ized by τLK [Eq. (8)]. At the same time, the eccentricity
also significantly reduce the orbital decay timescale τgw

[Eq. (10)]. Therefore, the inner binary’s eccentricity can
accumulate only if τLK < τgw.

In fact, this timescale argument allows us to obtain the
limiting eccentricity in a dissipative system by solving the
equation17 (see also, e.g., Ref. [35])

τgw(elim) = τLK(elim). (67)

In the limit elim ' 1, the above equation simplifies to

1− elim ' 9.1× 10−5

×
(

µ

25 M�

)1/3(
Mt

100M�

)5/6
(
a

(0)
i

3 AU

)−11/6

×
(

M3

109M�

)−1/3
(
ao

√
1− e2

o

0.06 pc

)
. (68)

The corresponding merger timescale is now obtainable by
plugging Eq. (68) to Eq. (11), leading to

τm,lim ' 2.5× 103 yr

(
Mt

100M�

)1/2
(
a

(0)
i

3 AU

)−3/2

×
(

M3

109M�

)−1
(
ao

√
1− e2

o

0.06 pc

)3

. (69)

Therefore, the limiting value of (1−elim) is now given by
the maximum of Eq. (68) and Eq. (31). Ssimilarly, the
merger timescale is given by the maximum of Eq. (69)
and Eq. (32).

We numerically verify this result in Fig. 16 using both
the DA and SA LK equations (for the SA equations, we
consider 6 different initial phases of the outer orbit, each
differing by π/3). The initial inclination between the in-
ner and outer orbit is fixed at the value given by Eq. (29).
The crosses are the maximum eccentricity obtained nu-
merically, the dotted-olive trace is the prediction for a

17 During the initial eccentricity excitation phase, the inner orbit’s
semi-major changes little and can be well approximated by its

initial value a
(0)
i .
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conservative system, and the solid-grey trace corresponds
to systems including GW-driven decay using Eq. (67).
Fig. 16 confirms that the timescale argument is in good
agreement with the numerical results.18
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a
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1
−
e With GW

Conservative

0.10.03
ao [pc]
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e(2forb = 3mHz)

e(2forb = 10Hz)

FIG. 16. Limiting eccentricity achievable as a function of

a
(0)
i (left) and ao (right). The limiting eccentricity during the

LK process, including GW radiation, obtained numerically
(crosses) are in good agreement with the analytical expres-
sions [solid-grey and dash-olive traces, corresponding respec-
tively to Eqs. (68) and (31)]. Also shown as dots (pluses)
are the eccentricity when the orbital frequency forb satisfies
2forb = 3 mHz (2forb = 10 Hz). The triple system has masses
(M1,M2,M3) = (55, 45, 109)M�, and in the left (right) plot

we have fixed ao = 0.06 pc (a
(0)
i = 3 AU). The shaded region

denotes the space in which the triple system is dynamically
unstable.

The limiting merger time, Eq. (69), explains why in
the scatter plot of Fig. 2 we see points piled up at a
vertical line corresponding to 2.5×103 yr (such piling up
is also seen in, e.g., fig. 3 of Ref. [2] and is explained by
exactly the same reasoning). While some values of the
initial inclination I(0) can give more extreme eccentricity
excitation when the system is conservative (Eq. 31), once
the GW decay is taken into account, the eccentricity is
then limited to Eq. (68). Consequently, all systems with

18 A caveat is that if the limiting values are set by Eqs. (31) and
(32), corresponding to the cases in which the GW decay rate is
always slower than the LK oscillation rate, then the use of SA
equations and/or the inclusion of other effects (such as those as-
sociated with an SMBH; Sec. II C) could exceed the bounds given
by these equations. Also, for triples in the field with comparable
masses, the octuple-order effects may also play a significant role.
See examples from Refs. [2, 6, 41], etc.. Nonetheless, when the
limiting values are set by the dissipative ones, Eq. (68) and (69),
then from the piling-up of points in, e.g., Figs. 1 and 2 we see
that our result should still apply both when the SA approxima-
tions is used (top panel of Fig. 2) and when SMBH effects are
incorporated (Fig. 1).

I(0) in this range have the same merger time given by
Eq. (69).

Note also that once the eccentricity reaches its limiting
value given by Eq. (67), the inner binary also effectively
decouples from the tertiary perturber, and its eccentricity
then decays monotonically according to Eq. (13). This
allows us to explore the eccentricity at a given frequency
(e.g., 2forb = 10 Hz with forb the orbital frequency) over
a large range of parameter space.

One such example is shown in Fig. 17. In Fig. 17,
we fix the triple system to have masses (M1,M2,M3) =
(55, 45, 109)M� and vary the initial semi-major axes of
the inner and outer orbits. We first determine the ex-
pected limiting eccentricity according to Eq. (68) can be

achieved through the LK process and then use [a
(0)
i , elim]

as the initial condition for binary evolution. By solving
the scalar versions of Eqs. (12) and (13) (as we do not
need to follow the spin here), we can then obtain the esti-
mated eccentricity when the inner binary enters the sen-
sitivity band of a ground-based detector (2forb = 10 Hz).

While the residual eccentricity increases as a
(0)
i in-

creases and as ao decrease, it is unlikely to be more than
0.1 when the binary enters LIGO’s sensitivity band19, as
to excite a greater eccentricity the triple system would
be in the dynamically unstable regime [68]. Note that
this result is consistent with the pluses in Fig. 16, where
we numerically evolve the full set of equations governing
the triple system.
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FIG. 17. Maximum eccentricity when the inner binary
enters the LIGO band (2forb = 10 Hz) for a triple with
(M1,M2,M3) = (55, 45, 109)M� going through the LK pro-
cess.

Furthermore, it is easy to show that the eccentric-

19 Due to the caveat described in f.n. 18, we do not claim the values
as absolute upper limits on the residual eccentricities. Nonethe-
less, they serve as decent approximations, as numerically verified
in Fig. 16.
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ity evolution with respect to the orbital frequency,
de/dforb ∝ e(1 − e2)/forb, is independent of the masses,
yet from Eqs. (31) and (68) we see that a massive in-
ner binary disfavors extreme eccentricity through the LK
mechanism (which is the initial condition for the binary
evolution). This is also why we find smaller residual ec-
centricities than previous studies that focused on lighter
inner binaries (see, e.g., Refs. [35, 41]). Therefore, it
is unlikely for the LK mechanism to produce significant
residual eccentricity for a massive binary like GW190521
when it enters the LIGO band. On the other hand, if we
observe significant residual eccentricity, it would suggest
the binary is likely formed via other dynamical channels
(e.g., binary-single scattering [86–88] or gravitational-
braking [17, 89, 90]).

Consequently, a space-based GW detector is ideal for
studying the orbital eccentricity evolution at lower or-
bital frequencies. This idea has been studied extensively
in the context of LISA (see, e.g., Ref. [58, 60]). How-
ever, for systems reaching the limiting value [Eq. (68)],
the eccentricity would be so high when 2forb is in LISA’s
band that the orbital energy is radiated away via high-
order orbital harmonics which LISA is insensitive to (see
Ref. [91]).

To demonstrate this point, we follow the approach by
Ref. [20]. Specifically, we decompose the GW strain as a
sum of orbital harmonics as

h(t) =

∞∑
k=1

hk(t), (70)

where each harmonic oscillates at fk = kforb + γ̇ with γ
the direction of the pericenter.20 Each harmonic has a
characteristic strain amplitude in the frequency domain,
which is given by

hc,k(fk) =
1

πDL

√
2Ėk

ḟk
, (71)

where Ėk is the GW power radiated at frequency fk.
We refer interested readers to Ref. [20] and references
therein for the details of this calculation, while here we
focus solely on the results.

In Fig. 18 we show the evolutionary trajectories of the
characteristic strain amplitudes for the first four orbital
harmonics (grey traces). Here the binary is assumed to
have (M1,M2) = (55, 45)M� and is at a cosmological
redshift of z = 0.44.21 We further assume the binary has
initial conditions of a(0) = 3 AU and 1 − e(0) = 10−4,
similar to the limiting eccentricity of the main triple sys-
tem considered in this paper (see Eq. 68). Note that

20 A circular binary only emits via the k = 2 component, which is
why we typically use 2forb to indicate the frequency.

21 This is consistent with the parameters of GW190521 as reported
in Ref. [11]. Note that the masses have been redshifted to (1 +
z)M1,2 in the detector frame.

different harmonics reach the same frequency at different
times, as such, we use the (plus, dot, cross) markers to
represent timestamps of (1 week, 1 day, 1 hour) prior to
the merger. Also shown in the plot (cyan traces), from
left to right, are the sky-averaged sensitivity curves22 of
LISA [64], TianGO [66], and LIGO-Voyager [92].

As discussed above, when the binary enters the band of
a ground-based detector (2forb & 10 Hz) only the k = 2
harmonic has a significant amplitude, due to circulariza-
tion. In the case of a milli-Hz detector, e.g. LISA, there is
a potential loss of detection because when 2forb is in the
millihertz band (corresponding to the instant marked by
the pluses), the GW is mostly carried away by the high-
order harmonics [93] that oscillate at frequencies above
LISA’s sensitivity band. However, a detector sensitive
to the decihertz band, e.g. the proposed TianGO mis-
sion [66] (middle cyan trace), could detect the evolution
of these eccentric systems.
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FIG. 18. Characteristic strain as a function of frequency for
the first 4 orbital harmonics (k = 1−4) for a system with

a(0) = 3 AU, 1 − e(0) = 10−4, and located at a cosmolog-
ical redshift z = 0.44 (corresponding to a luminosity dis-
tance DL ' 2.5 Gpc assuming cosmological parameters from
the Planck 2015 results [94]). The three cyan curves, from
left to right, correspond to the sky-averaged sensitivities [i.e.,√

5fSn(f)] of LISA, TianGO, and Voyager, respectively. We
use the (plus, dot, cross) symbols to represent the instant that
the binary is (1 week, 1 day, 1 hour) before the final merger.

V. CONCLUSION AND DISCUSSIONS

In this paper we studied the spin and eccentricity evo-
lution in hierarchical triple systems via the LK mecha-

22 Specifically, we plot
√

5fSn(f), where Sn(f) is the power spec-
tral density of the noise in each detector. The sky-averaged
signal-to-noise ratio (SNR) for each harmonic is then SNR2 =∫
d ln f

{
h2
c,k(f)/ [5fSn(f)]

}
. See Ref. [20].
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nism, and also followed the inner binary’s evolution fur-
ther towards the merger. To conclude our study, we first
summarize our key results in Sec. V A, and discuss their
implications in Sec. V B.

A. Key results

(1) We confirmed the existence of a spin attractor for
systems that experience multiple “clean” LK cycles, as
reported by Ref. [2]. However, the attraction is not to-
wards χeff = 0, but it is in fact demonstrated to be

| cos θS1(2)L| = | cos θ
(0)
S1(2)Lo

| (see Fig. 4).

(2) We generalized the effective potential theory intro-
duced by Ref. [67] to allow for non-zero orbital eccentric-
ity, and provided a prescription to evolve such binaries
in the precession-averaged manner (Sec. III A). This al-
lows us to efficiently evolve a binary from its formation
(typically with large eccentricity if the binary is formed
in the dynamical channels, including the LK mechanism)
to a semi-major axis of few hundred Mt.

(3) We found that the final alignment of the spin vec-
tors are essentially independent of the maximum eccen-
tricity excited by the LK interaction (Fig. 12). Instead,
it depends on the initial in-plane component of the spin
(Fig. 13). For a system with a large component spin ini-
tially lying in the orbital plane, the spin evolution signif-
icantly disfavors aligned final spins. This in fact should
be true irrespective of its formation channel (whose role
is to provide a prior distribution of χeff and χ1(2)p).

(4) We further reported an interesting correlation be-
tween the spin-orbit and spin-spin alignments (Fig. 11
and 14). This can be further explained by the (nearly)
conserved quantities which we shown in Eq. (64) and dis-
cussed in details in Appx. D. Such a correlation could be
incorporated in parameter estimation pipelines to help
extract more information from detected binaries.

(5) Since the GW kick depends on the final spin-
spin alignment, we found that the spin evolution may
significantly affect the distribution of the kick velocity
(Fig. 15).

(6) We considered the limiting eccentricity that can be
achieved by the LK mechanism in the presence of GW
radiation and provided bounds derived from a timescale
argument [Eq.( 67) and Fig. 16]. For binaries in the vicin-
ity of an SMBH, we showed that the residual eccentricity
is typically small (. 0.1) when the binary enters a LIGO-
like ground-based detector’s band (Fig. 17) for two main
reasons: the triple stability requires the octuple effects to
be small (Sec. II A), and inner binaries may be intrinsi-
cally massive [Eqs. (31) and (68)]. Furthermore, in order
to capture the full orbital evolution, a decihertz detector
would be necessary (Fig. 18).

B. Discussion

In this study we made no attempt to predict the merger
rates, given the complicated dynamics in dense stellar
environments. Instead, we focused on studying the spin
orientation at the end of the LK interaction. We fur-
ther restricted to the leading-order (quadrupole) inter-
actions which, according to Ref. [2], showed the cleanest
attraction of the spin vectors. If further corrections are
included (see, e.g., Ref. [6]), it typically broadens the dis-
tribution of the spin-orbit angle. Nonetheless, as the spin
attraction is towards the initial angle between the spin
and the outer AM, we do not expect high-order correc-
tions to significantly affect the distribution of χeff for an
initially isotropic spin distribution. On the other hand,
if the spins have a preferred initial orientation after take-
ing other astrophysical processes into account, we would
then expect the LK process to shape the distribution of
χeff .

While we started our discussion regarding the final spin
orientations in the context of LK interactions in Sec. III,
we also considered the orientations obtained from a spe-
cific slice of (χeff , χ1p). This allows our conclusions in
that section to be extended to a more generic context,
which hold as long as a formation channel allows for the
same initial conditions.

Specifically, the correlation between the spin-orbit and
spin-spin alignments [Eq. (64)] is derived based on binary
PN dynamics. Such a correlation could be further used
to improve parameter estimation. For example, if we
could measure the angle between spin and orbit first with
a space-based detector in, e.g., the decihertz band (as
demonstrated in Ref. [66]), and then again with a ground-
based detector at its merger, then Eq. (64) and Fig. 14
indicate the final spin-spin angle, θS1S2 , is no longer a free
parameter to be inferred, but can in fact be constrained
by the evolution from the lower-frequency measurement.
With a better constrained θS1S2

, it could further improve
our prior on, e.g., the GW recoil velocity. These ideas
provide much to explored in future studies.
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Appendix A: Explicit equations of motion

In this section we provide the explicit equations of mo-
tion of the LK interaction for both the DA and SA ap-
proximations. Consistent with the main text, here we
truncate to the quadrupole order. The octupole-order
terms are available in, e.g., Refs. [72] and [2] for DA and
SA approximations, respectively.

To obtain the DA LK evolution, we integrate
(L, e,Lo, eo),

dL

dt
|LK =

LΩDA√
1− e2

[
(1− e2)

(
L̂ · L̂o

)
L̂× L̂o

−5
(
e · L̂o

)
e× L̂o

]
, (A1)

de

dt
|LK = ΩDA

√
1− e2

[
(L̂ · L̂o)e× L̂o

+2L̂× ê− 5
(
e · L̂o

)
L̂× L̂o

]
, (A2)

dLo

dt
|LK =

LΩDA√
1− e2

o

[
(1− e2)

(
L̂ · L̂o

)
L̂o × L̂

−5
(
e · L̂o

)
L̂o × e

]
, (A3)

deo

dt
|LK =

LΩDA

Lo

√
1− e2

o

×
{
−5
(
e · L̂o

)
eo × e+ (1− e2)

(
L̂ · L̂o

)
eo × L̂

−
[

1

2
−3e2+

25

2

(
e · L̂o

)2

−5(1−e2)

2

(
L̂ · L̂o

)2
]
L̂o×eo

}
,

(A4)

where

ΩDA =
3

4

(
M3

M1 +M2

)(
a

ao

√
1− e2

o

)3

Ωorb, (A5)

The SA LK evolutions are solved in terms of

(L, e, ro, dro/dt),

dL

dt
|LK =

LΩSA√
1− e2

[
−(1− e2)

(
L̂ · r̂o

)
L̂× r̂o

+5 (e · r̂o) e× r̂o] , (A6)

de

dt
|LK = ΩSA

√
1− e2

[
−(L̂ · r̂o)e× r̂o

−2L̂× ê+ 5 (e · r̂o) L̂× r̂o

]
, (A7)

d2ro

dt2
= −Φo

(
r̂o

ro

)
− ΦQ

{
−3

(
r̂o

ro

)
×
[
−1 + 6e2 + 3(1− e2)

(
L̂ · r̂o

)
− 15 (e · r̂o)

]
+ 6

1− e2

ro

(
L̂ · r̂o

) [
L̂−

(
L̂ · r̂o

)
r̂o

]
− 30

(e · r̂o)

ro
[e− (e · r̂o) r̂o ]

}
, (A8)

where in the above equations we have defined

ΩSA =
3

2

(
M3

M1 +M2

)(
a

ro

)3

Ωorb, (A9)

Φo =
(M1 +M2 +M3)

ro
, (A10)

ΦQ =
1

4

M3

ro

(
µ

µo

)(
a

ro

)2

. (A11)

Appendix B: Deriving dS/dt for eccentric orbits

dS

dt
=

1

2S

d (S · S)

dt
=

1

S

d (S1 · S2)

dt

=
1

S

(
dS1

dt
· S2 + S1 ·

dS2

dt

)
, (B1)

where we have used S = S1 + S2 and the magnitudes
S1, S2, S2

1 , S2
2 are constants. Now plugging in Eqs. (17)

and (20)-(22) we have,

d

dt
(S1 · S2)

= − 3

2a3(1− e2)3/2

1− q2

q

(
1− M1M2χeff

L

)
× S1 · (S2 ×L)

= −3

2
η6
(
1− e2

)3/2
(
M2

t

L

)5
S1S2

Mt

(
1− q2

)
q

×
(

1− ηM2
t χeff

L

)
Ŝ1 ·

(
Ŝ2 × L̂

)
, (B2)

where we have replace the semi-major axis a in terms of
(L, e).
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FIG. 19. Top panel: timescale comparison at the ISCO. Each
grey trace represents the allowed instantaneous precession
time based on the final J and L using the effective poten-
tial theory, and the red cross is the true value we obtained in
the simulation. The purple-dotted line is the fifty times the
GW decay timescale at 6Mt. Bottom panel: the true distri-
bution of S at the 6Mt (grey-solid trace). If we simply assign
p(S|J, L) ∝ 1/|dS/dt(J, L)| as we have done for Figs. 8 and
9, we would obtain a probability density function described
by the olive trace, which is significantly biased relative to the
true distribution.

Further note that geometrically we have

Ŝ1 ·
(
Ŝ2 × L̂

)
= sin θS1L sin θS2L sin ∆Φ, (B3)

with the angles given by Eqs. (52), (53), and (55), and
each angle is a function of (J, L, S). Similarly, we can
write S1 ·L and S2 ·L in terms of cos θS1L(J, L, S) and
cos θS2L(J, L, S).

Appendix C: Bias in the spin distribution when
τgw < τpre.

In the main text we have used Eqs. (61)-(63) to gen-
erate the probability density functions of various quan-
tities, and as shown in Figs. 8 and 9, our method re-

produces well the distribution obtained from numerical
simulations. However, this method can only be applied
when we have τpre � τgw, and we demonstrate here the
potential bias that would be induced when the timescale
requirement is not satisfied.

Specifically, we can repeat the process we have used
in generating Fig. 8 for data at 6Mt (the olive data in
Fig. 11). The reconstructed probability of the total spin
magnitude S is shown in the olive trace in the bottom
panel of Fig. 19. As a comparison, the true distribu-
tion from the numerical data is shown in the grey trace.
Clearly, the reconstructed probability is biased towards
small S.

To examine things in more details, we also show
the instantaneous precession time which we define as
(S1 + S2) /|dS/dt| and compare it with the GW decay
timescale in the top panel of Fig. 19. Here each grey trace
is generated with a set of (J, L, e) and the full range of S
allowed by the effective potential, and each red cross is
the true value of S obtained from the evolution. While
the instantaneous precession time can be hundreds of
times longer than τgw, and according to Eq. (61) those lo-
cations should be more likely to be sampled, we nonethe-
less see that the majority of the realization actually hap-
pens in the region where the precession time is less than
50τgw (dotted-purple line).

Consequently, we conclude that while the effective po-
tential theory is still valid at 6Mt, it cannot be used to di-
rectly predict the likelihood that the condition τpre � τgw

is not satisfied. To obtain a faithful distribution, a full
numerical simulation over a large ensemble would thus
be necessary.

Appendix D: Understanding the correlation between
cos θS1L and cos θS1S2

In this section we study the dynamical relations be-
tween the spin-orbit angle θS1L and the spin-spin angle
θS1S2 . The goal is to better understand the correlations
shown in, e.g., Fig. 11, and the nearly constant quanti-
ties shown in the middle panel of Fig. 10. Note that our
derivations here do not assume a circular orbit, but holds
generically for eccentric orbits as well.

We have23

d

dt
cos θS1L =

d

dt

(
L̂ · Ŝ1

)
=
dL̂

dt
· Ŝ1 + L̂ · dŜ1

dt
, (D1)

leading to

d

dt
cos θS1L =

3S2(1 + q)

2a3(1− e2)3/2q

×
[
1− M1M2χeff

L

]
Ŝ1 ·

(
Ŝ2 × L̂

)
. (D2)

23 Note that if dL/dt = Ω × L + (dL/dt) L̂, then dL̂/dt =
(dL/dt)/L− L̂ (dL/dt) /L = Ω× L̂.
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Meanwhile, from Eq. (B2) we have

d

dt
cos θS1S2

=
−3L(1− q2)

2a3(1− e2)3/2q

×
[
1− M1M2χeff

L

]
Ŝ1 ·

(
Ŝ2 × L̂

)
, (D3)

which has a similar form as d cos θS1L/dt.
Therefore, we have

(1− q) d
dt

cos θS1L +
S2

L

d

dt
cos θS1S2

. (D4)

If we treat L as a constant first, we then have

(1− q) cos θS1L +
S2

L
cos θS1S2

= Const. (D5)

This is also the relation we present in Eq. (64).
As we argued in the main text, the 2 PN relation can

also be derived from the effective potential and the fact
that J2 and L2 are constants at 2 PN. This is illustrated
in Fig. 20 where we plot the contours between χeff and
various cos θ (see also Ref. [67] on how to generate such
contours). As Eq. (64) or (D5) eliminates S2, the only
variable at 2 PN, it corresponds to a line in the effective
potential description. Thus, once we fix the value of χeff ,
Eq. (64) has to a fixed value (in contrast to cos θS1L or
cos θS1S2

which can oscillates between the two intercepts
formed by its contour and a given value of χeff).

To incorporate dynamics at higher PN orders, it is in-
teresting to first examine the special case where q = 1.
From Eq. (D4) it is easy to see

cos θS1S2
' Const. (when q = 1). (D6)

The above equation holds at 2.5 PN order.
To obtain the more general 2.5 PN relation when q 6= 1,

it is easiest achieved by multiplying both sides of Eq. (D4)

by L and use Ld cos θS1L/dt = d(L cos θS1L)/dt −
cos θS1LdL/dt. If we further define

(1− q)LC ≡ (1− q)L cos θS1L + S2 cos θS1S2
, (D7)

we have

(1− q) d
dt

(LC) = (1− q) cos θS1L
dL

dt
. (D8)

Consequently,

(1− q)
[
LC − (LC)(0)

]
= (1− q)

∫
cos θS1L

dL

dt
dt. (D9)

For q 6= 1, we can drop the (1− q) factor from both side.

We can further approximate C(0) ' cos θ
(0)
S1L

, this leads
to

LC −
∫

cos θS1LdL ' L(0)C(0) ' L(0) cos θ
(0)
S1L

. (D10)

Note that while in the second approximation we have
compromised some accuracy, it nonetheless renders the
right-hand side as a well-defined constant because as L→
∞, cos θS1L → constant to a good approximation.

In fact, cos θS1L remains a constant until 2 PN, and
even when it starts to vary significantly, it oscillates

around its initial value cos θ
(0)
S1L

(see, e.g., Fig. 10).
Therefore we can approximate the integral as∫

cos θS1L
dL

dt
dt ' cos θ

(0)
S1L

[
L− L(0)

]
. (D11)

Together with the approximation C(0) ' cos θ
(0)
S1L

, we now
have (for q 6= 1)

C = cos θS1L +
S2

(1− q)L
cos θS1S2

' cos θ
(0)
S1L

. (D12)

This means the quantity C can also be approximated as
a constant.

We can also write C in terms of (J, L) as

C =
J2 − L2 − S2

1 − S2
2 − [q/(1 + q)]χeffM

2
t L

2(1− q)S1L
(D13)

If one uses the full expression of C(0), we then have

D ≡ ∆c1 +
S2

(1− q)L
∆c12

=

∫
cos θS1LdL

L
− cos θ

(0)
S1L

[
1− L(0)

L

]
' 0, (D14)

where

∆c1=
[
cos θS1L − cos θ

(0)
S1L

]
,

∆c12=
[
cos θS1S2

− cos θ
(0)
S1S2

]
' cos θS1S2

.
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FIG. 21. Various quantities to show the spin dynamics at 2.5
PN. The system is the same as the one shown in Fig. 10.

Note that in practice cos θ
(0)
S1S2

is not a well-defined quan-
tity at large orbital separations where spins precess faster
than the orbit decays. This introduces a fundamental un-
certainty of S2/(1− q)L in the value of D.

In Fig. 21, we verify various relations we derived in
this Section numerically. Specifically, the red trace cor-
responds to the left-hand-side of Eq. (D10). In the purple
trace, we replace the LC term by its 2 PN counterpart
L(cos θS1L + K cos θS1S2

) [see Eq. (64)] but still remove
the secular variation piece

∫
cos θS1LdL. As expected,

the purple trace shows more oscillations than the red
one. The dashed-olive trace is the difference between the
left- and right-hand sides of Eq. (D11), whose difference
should equal to LD (grey trace) according to Eq. (D14).
There is a constant offset between them because we have
intentionally set cos θ

(0)
S1S2

to 0 when evaluatingD. Lastly,
the pink-dotted trace corresponds to the last term intro-
duced in Eq. (D8), which is needed to cancel the Lense-
Thirring spin-spin coupling’s back-reaction on the orbit.
As can be seen from the plot, it is indeed a small quantity
oscillating around 0 and can thus be ignored.
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[22] J. A. González, U. Sperhake, B. Brügmann, M. Hannam,
and S. Husa, Maximum Kick from Nonspinning Black-
Hole Binary Inspiral, Phys. Rev. Lett. 98, 091101 (2007),
arXiv:gr-qc/0610154 [gr-qc].

[23] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake,
M. Hannam, S. Husa, and B. Brügmann, Inspiral,
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