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Tidal effects have important imprints on gravitational waves (GWs) emitted during the final stage of the
coalescence of binaries that involve neutron stars (NSs). Dynamical tides can be significant when NS
oscillations become resonant with orbital motion; understanding this process is important for accurately
modeling GWemission from these binaries and for extracting NS information from GW data. In this paper,
we use semianalytic methods to carry out a systematic study on the tidal excitation of fundamental modes
(f-modes) of spinning NSs in coalescencing binaries, focusing on the case when the NS spin is antialigned
with the orbital angular momentum—where the tidal resonance is most likely to take place. We first expand
NS oscillations into stellar eigenmodes, and then obtain a Hamiltonian that governs the tidally coupled
orbit-mode evolution. (Our treatment is at Newtonian order, including a gravitational radiation reaction at
quadrupole order.) We then find a new approximation that can lead to analytic expressions of tidal
excitations to a high accuracy, and are valid in all regimes of the binary evolution: adiabatic, resonant, and
postresonance. Using the method of osculating orbits, we obtain semianalytic approximations to the orbital
evolution and GW emission; their agreements with numerical results give us confidence in our
understanding of the system’s dynamics. In particular, we recover both the averaged postresonance
evolution, which differs from the preresonance point-particle orbit by shifts in orbital energy and angular
momentum, as well as instantaneous perturbations driven by the tidal motion. Finally, we use the Fisher
matrix technique to study the effect of dynamical tides on parameter estimation. We find that, for a system
with component masses of ð1.4; 1.4Þ M⊙ at 100 Mpc, the constraints on the effective Love number of the
(2,2) mode at Newtonian order can be improved by a factor of 3 ∼ 4 if spin frequency is as high as 500 Hz.
The relative errors are 0.7 ∼ 0.8 in the Cosmic Explorer, and they might be further improved by post-
Newtonian effects. The constraints on the f-mode frequency and the spin frequency are improved by
factors of 5 ∼ 6 and 19 ∼ 27, respectively. In the Cosmic Explorer case, the relative errors are 0.2 ∼ 0.4 and
0.7 ∼ 1.0, respectively. Hence, the dynamical tides may potentially provide an additional channel to study
the physics of NSs. The method presented in this paper is generic and not restricted to f-mode; it can also
be applied to other types of tides.

DOI: 10.1103/PhysRevD.101.123020

I. INTRODUCTION

The detection of gravitational waves (GWs) and their
electromagnetic counterparts from binary neutron star
(BNS) coalescence GW170817 [1–4], as well as the recent
event GW190425 [5], has started a new approach to study
the physics of NSs. The observations have already provided
new constraints on tidal deformabilities [6–9], the maxi-
mum mass [7,10–13], radii [6,9], and f-mode frequencies
[14] of NSs. With the improvement of detector sensitivity,
more BNS coalescence detections are expected for the near
future [15–18]. Furthermore, 3G detectors, like the Einstein
Telescope (ET) [19,20] and the Cosmic Explorer (CE) [21],

are being planned for operation in the 2030s. These 3G
detectors may increase neutron star black-hole and BNS
detection rates by 3–4 orders of magnitude [22]. As a result,
accurately modeling NSs in binary systems is necessary
and timely.
During the inspiral process, NSs in binaries are distorted

due to the tidal field of their companions. Tidal coupling
between compact objects in binaries allows the equation of
state (EOS) of these objects to leave an imprint on GW
signals, both during the early inspiral stage [23] and during
the late inspiral stage [24,25]. Under the equilibrium-tide
approximation, the effect of tidal interaction can be
characterized by the relativistic tidal Love number.
Hinderer et al. studied the effect of equilibrium tide on
gravitational waveforms, both using polytropic [23,26] and
more realistic EOS [27]. They found that 3G detectors are
likely able to probe the clean tidal signatures from the early
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stage of inspirals. The post-Newtonian (PN) [28–32] tidal
effects were studied by Vines and Flanagan [33], who
explicitly obtained equations of motion with quadrupolar
tidal interactions up to 1PN order. They pointed out that
spin-orbit coupling must be included at this order in order
to conserve angular momentum. The spin-tidal couplings
and higher PN orders were studied later by Abdelsalhin
et al. [34].
In the late stage of an inspiral, the binary’s orbital

frequency sweeps through from hundreds of Hz to thou-
sands of Hz. As the tidal driving frequency comes close to a
normal mode frequency of the NS, internal stellar oscil-
lations can be excited—giving rise to dynamical tide (DT).
Exchanges of energy and angular momentum between
orbital motion and stellar oscillations cause changes in
orbital motion, leading to additional features in the gravi-
tational waveform.
The tidal excitation of f-modes of stars was first

investigated by Cowling [35]. Later, several authors studied
the DTs of nonspinning stars in the context of Newtonian
physics [36–38], and in the context of general relativity
(incorporating gravitational radiation reaction and treating
the NS relativistically) [39–42]. In particular, Lai (hereafter
L94) [36] split the whole process into three regimes: the
adiabatic, resonant, and postresonance regimes. The first
one is described by the well-known adiabatic approxima-
tion to a high accuracy. At the postresonance stage, they
assumed that each stellar mode oscillates mainly at its own
eigenfrequency; by factoring out the eigenfrequency, the
motion can then be described by a slowly varying ampli-
tude. This allowed them to obtain a simple form of
postresonance tidal amplitude with the stationary-phase
approximation (SPA), which further leads to changes in the
orbital separation, energy, angular momentum, and the
phase of GWs. They found that the amount of energy
transfer due to resonance and the induced GW phase shift
are negligible, since the coupling between the g-mode and
tidal potential is weak. They also pointed out that f-mode
frequency is too high for resonance to take place.
As it turns out, the effect of DT can be strengthened by

stellar rotation1 [43,44] and orbital eccentricity [45–48]. In
this paper, we mainly focus on the significance of stellar
rotation. It is conventionally believed that a high rotation
rate is unlikely when binaries enter the LIGO band, since
such systems usually have had enough time to evolve and
spin down. For example, recent events, GW170817 [1] and
GW190425 [5], are all consistent with low spin configu-
rations. The fastest spinning pulsar observed in BNS is PSR
J0737-3039A, which spins at 44 Hz [49]. Andersson et al.
[50] estimated that it will spin down to 35 Hz as it enters the
LIGO band. However, high spin rate is still physically

allowed. In such systems, retrograde rotation (with respect
to the orbit) drags the mode frequency to a lower value in
the inertial frame. This makes the tidal resonance take place
earlier. The energy and angular momentum transfers due to
DTs in spinning stars were calculated in Ref. [43]. Ho and
Lai [44] found that the resonance of the dominant g-mode is
enhanced by spin if the star rotates faster than 100 Hz, and
it can induce a phase shift of ∼0.05 rad in the waveform.
Additionally, f-mode resonance can produce a significant
phase shift if the spin frequency is higher than 500 Hz
(depending on the EOS).
However, Ref. [43] was based on a configuration-space

decomposition of the stellar oscillation, which does not use
an orthonormal basis for a spinning star. This problem can
be fixed by a phase-space mode expansion method [51].
Within this formalism, Lai and Wu [52] investigated
the effect of the inertial modes2 and found that the phase
shift is of order 0.1 rad when the spin frequency is lower
than 100 Hz. The exception is the m ¼ 1 mode, which
can be excited at tens of Hz for nonvanishing spin-orbit
inclinations, and hence, generate a large phase shift in the
GW phase.
Accurate theoretical templates are needed in order to

extract tidal information from GWs. Although extensive
work has been done on adiabatic tide (AT), the study on
DTs still requires improvements. For example, L94 [36]
only estimated the changes of several parameters due to
DTs. Their work did not explicitly treat the effect of tidal
backreaction on the orbit. The treatment did not provide
detailed time evolution near the resonance, either. One
approximate model was provided by Flanagan and Racine
(hereafter FR07) [53]. They approximated the postreso-
nance orbit by a point-particle (PP) trajectory, since the
energy and angular momentum transfers only take place
near the resonance. After that, the NS is treated as freely
oscillating without interacting with the orbit. This model
averages the dynamics over the tide-oscillation timescale
and therefore does not describe the tidal perturbation at
shorter timescales.
More recently, Hinderer et al. (hereafter, Hþ 16) [54,55]

incorporated DT, in particular, the resonance of the f-mode
in nonspinning NS, into the effective-one-body (EOB)
formalism. A frequency domain model was developed
later in Ref. [56]. In these works, DT is described by
the effective Love number

λeff ¼ −
EijQij

EklEkl ; ð1Þ

where Eij is the tidal field induced by the companion and
Qij is the quadrupole moment of the NS. To evaluate this

1In the inertial frame, mode frequencies are shifted by the spin
frequency to a lower value. As a result, those modes become
easier to be excited. See Fig. 2 for more details.

2Inertial modes, or generalized r-modes, are a class of modes
in spinning NSs that are not purely axial when spin frequency
goes to 0, whereas r-modes are axial in this limit.
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quantity, they expanded the NS’s response function near
resonance and described the evolution of DT by Fresnel
functions in the resonant regime. They then used asymp-
totic analyses to piece adiabatic expressions and Fresnel
functions together to obtain a single formula. The formula
is precise prior to resonance. But it does not describe the
phasing of the postresonance regime. This is not a big issue
for slowly spinning NSs, since in this case the mode is not
excited until the end of coalescence and postresonance
dynamics is extremely short. Furthermore, because current
detections are all consistent with low spin configuration
[1,5], this model is accurate enough for current data
analysis. However, this method cannot describe rapidly
spinning NSs [57]; given the fact that rapidly spinning NSs
are physically allowed, an accurate GW model for these
systems is still necessary. In this paper, we extend Hþ 16
[54,55] to arbitrary spin by deriving new analytic formulas
to describe the entire process of DT, which is accurate
throughout the adiabatic, resonant, and postresonance
regimes. The formulas agree with numerical integrations
to high accuracies. We then carry out a systematic study on
the postresonance dynamics by using the tidal response
formulas and the method of osculating orbits. Finally,
we analyze the impact of DT on parameter estimations
by Fisher information matrices formalism. In order to
more optimistically illustrate a best-case scenario in which
f-mode DT might bring more information, we will be
assuming high NS spin frequencies and stiff EOS.
However, as we will discuss later, the qualitative features
of DT shown in this paper do not depend on the specific
properties of NSs.
This paper is organized as follows. In Sec. II A, we

introduce the EOS used in this paper, and construct
approximations for the spin’s effect on mode frequencies
using the Maclaurin spheroid model. In Sec. II B we derive
equations of motion using the phase-space mode expansion
method and a Hamiltonian approach. With these at hand,
we give a comprehensive discussion on DT in Secs. III and
IV. In Sec. III, we mainly work on the stellar part. We first
review previous studies on DT in Sec. III A and propose our
new approach in Sec. III B, where we also compare these
models with numerical integrations. In Sec. IV, we use our
new formulas and the method of osculating orbits to study
postresonance orbital dynamics. We get a set of first order
differential equations to describe the time evolution of
osculating variables (e.g., the Runge-Lenz vector, angular
momentum, and orbital phase). These equations can
provide rich information of the orbit near resonance, as
discussed in Sec. IV C. Then in Sec. IV D, we compare our
osculating equations with numerical integrations and pro-
vide a new way to obtain the postresonance averaged orbit
over the tide-oscillation timescale, which agrees with FR07
[53] to the leading order in of tidal interaction. By
combining our new method and FR07 [53], we obtain
an analytic expression for the time of resonance. Section V

mainly focuses on GWs. We first quantify the accuracy of
several models by the mismatch between waveforms. Then
in Sec. V B we use the Fisher information matrix formalism
to discuss the influence of DT on parameter estimation.
Finally, in Sec. VI we summarize our results.
Throughout this paper we use the following conventions

unless stated otherwise. We use the geometric units with
G ¼ c ¼ 1. We use Einstein summation notation, i.e.,
summation over repeated indexes.

II. BASIC EQUATIONS OF DYNAMICAL TIDES

This section will provide equations of motion of the
system undergoing DT. In Sec. II A, we construct approxi-
mations on the spin’s influence on f-mode frequencies,
based on the Maclaurin spheroid model. In Sec. II B we use
the phase-space mode expansion method and a Hamiltonian
approach to obtain the coupled equations of motion.

A. Neutron star equations of state and properties

In this paper, we shall use, as input for our studies,
properties of spinning neutron stars such as values of
f-mode frequencies and tidal Love numbers.
Properties of nonspinning NSs have been studied exten-

sively. In this paper we use two of them for comparison
purposes. One is the H4 model [27], which gives dimen-
sionless Love number k2 ¼ 0.104 for a NS with mass
MNS ¼ 1.4 M⊙ and radius RNS ¼ 13.76 km. Here k2 is
defined as [23]

k2 ¼
3

2

λ

R5
NS

; ð2Þ

where λ is the value of λeff in the equilibrium limit [Eq. (1)].
The other one is a Γ ¼ 2 polytrope with MNS ¼ 1.4 M⊙
and RNS ¼ 14.4 km, which has k2 ¼ 0.07524. The latter
model is the same as the one used in Hþ 16 [54,55]. Their
f-mode frequencies are 2π × 1.51 kHz and 2π × 1.55 kHz,
respectively, consistent with the universal relation of NS
properties [58–61]. We want to note that H4 is a stiff
EOS that is not favored by GW170817 [7], yet our focus is
on exploring what information DT might bring, hence the
H4 EOS will be more “optimistic,” since it leads to stronger
tidal features than the softer, more compact EOS.
For spinning NSs, f-mode frequencies will split, and the

Love number will also change. Unlike the nonspinning
case, there is not yet a systematic parametrization of
spinning NS properties, depending on the EOS. For the
Love number, we shall simply use their nonspinning
values; we will justify the validity of this treatment later
[below Eq. (35)]. On the other hand, since the f-mode
frequency split is important for bringing down the orbital
frequency required for resonance, we will need more
accurate input. Oscillation of spinning NSs has been
studied extensively in different limits, such as the (post-)
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Newtonian limit [62–68], the slow-rotation limit [69–73],
and the Cowling approximation [74–77] (see Sec. 8.6.1 of
Ref. [78] and references therein). The case of full relativ-
istic NSs with an arbitrary high rotation rate has also been
studied, for example, by Zink et al. [79], by using nonlinear
time-evolution code. In this paper, for simplicity, we shall
use the features of the Maclaurin spheroid to construct an
approximation on how spin influences f-mode frequencies.
The Maclaurin spheroid describes a self-gravitating,

rigidly rotating body of uniform density in Newton’s
theory. In the coordinate system ðx0; y0; z0Þ, which corotates
with the NS, the NS surface in hydrostatic equilibrium is
described by [80]

x02 þ y02

a21
þ z02

a23
¼ 1; ð3Þ

where we assume that the spin vector is along the z0 axis.
The spheroid’s semiaxes in the x0ðy0Þ and z0 directions are
denoted by a1 and a3, respectively. They are related to the
eccentricity es of the star by

es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a23
a21

s
: ð4Þ

Note that the NS surface is oblate due to the spin (a3 < a1),
so the stellar eccentricity is always smaller than 1.
Hydrostatic equilibrium leads to a one-to-one mapping
between the spin angular frequency Ωs and the stellar
eccentricity es [80]

Ω2
s ¼

2πρ

e3s
½ð1−e2sÞ1=2ð3−2e2sÞsin−1 es−3esð1−e2sÞ�; ð5Þ

where ρ is the mass density of the star. For a Maclaurin
spheroid, f-mode frequencies are specified in terms of the
stellar eccentricity es, which is further determined by ρ and
Ωs. In this paper we mainly focus on the ðj ¼ 2; k ¼ �2Þ
and ðj ¼ 2; k ¼ 0Þ modes. Here ðj; kÞ are the angular
quantum numbers of the multipole expansion, see
Sec. II B 1 for more details. Their mode frequencies (in
the corotating frame) are given by [see Eq. (32) of Ref. [81]
and Eqs. (12)–(13) of Ref. [82] ]

ω2
0

Ω2
s
¼ 1þ ζ20
1þ3ζ20

�
ð1−9ζ20Þþ

12ζ0ð1−ζ0arccotζ0Þ
ð1þ3ζ20Þarccotζ0−3ζ0

�
; ð6aÞ

ω2�
Ωs

¼ −1�
�
1−

4e2sR2

ð3− 2e2sÞsin−1es − 3esð1− e2sÞ1=2
�
1=2

;

ð6bÞ

where ζ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2s

p
=es and

R2 ¼
3ð1 − e2sÞ1=2

8es

X∞
p¼3

ð2p − 2Þ!!
ð2p − 1Þ!! e

2ðp−2Þ
s

þ 1 − e2s
e2s

�
arcsin es −

es
ð1 − e2sÞ1=2

�
;

¼ 10e4s − 7e2s − 3

8e3s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2s

p þ 3þ 8e2s − 8e4s
8e4s

arcsin es: ð7Þ

It is straightforward to see that each mode has two
frequencies with opposite signs. The positive (negative)
one corresponds to the prograde (retrograde) mode. The
absolute value of two (2,2) mode eigenfrequencies splits
due to the spin, and this is an analogue to the Zeeman split.
Equations (5)–(7) are valid for any 0 ≤ es < 1.3 In the

small-eccentricity (low-rotation) regime, we have

Ωs ¼
ffiffiffiffiffiffiffiffi
8πρ

15

r
es þOðe3sÞ; R2 ¼ −

2

15
es þOðe3sÞ: ð8Þ

As a result, ω0;2�=Ωs in Eq. (6) diverge when es → 0.
However, mode frequencies ω0;2� themselves converge to
finite values, which are given by

ω2� ¼ �
ffiffiffiffiffiffiffiffiffiffi
16πρ

15

r
−

ffiffiffiffiffiffiffiffi
8πρ

15

r
es þOðe2sÞ; ð9aÞ

ω0 ¼
ffiffiffiffiffiffiffiffiffiffi
16πρ

15

r
þOðe2sÞ; ð9bÞ

where the leading term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πρ=15

p
is the mode frequency

of a nonspinning NS. But it turns out that this prediction
differs from the true f-mode frequencies for a realistic
EOS, if we use the mean density of the star as ρ. This is due
to the assumption of homogeneity and incompressibility in
the Maclaurin case. We refer the interested readers to
Ref. [69] for a comprehensive comparison between the
Maclaurin spheroid and the relativistic NS in the slow-
rotation limit. Therefore, one should not directly use
Eq. (6). To obtain the f-mode frequency for a NS with
generic spin, we define an effective density ρeff, such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πρeff=15

p
coincides with the f-mode frequency of a

nonspinning NS with realistic EOS (H4 EOS or Γ ¼ 2
polytropic EOS). Meanwhile, we still assume the func-
tional dependence of the mode frequencies ω0;2� onΩs and
ρeff to be the same as Eq. (6). With such approximation,
f-mode frequencies for nonspinning NSs can be extended
to NSs with generic spins. In Fig. 1, we plot ω0; jω2�j as
functions of Ωs with both H4 EOS and Γ ¼ 2 polytropic
EOS. Results agree qualitative with previous studies [see
Fig. 5 of Ref. [79]].

3Maclaurin spheroids become unstable as es > 0.813 corre-
sponds to ∼900 Hz. Such a high rotation rate, however, is not of
our interest.
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B. Equations of motion

Using the same convention as Ref. [44], we consider a
BNS system with individual masses M1 and M2 moving in
the x-y plane, whose orbital angular momentum is along
the z axis. For simplicity, we assume that onlyM1 is tidally
deformed. We still use ðx0; y0; z0Þ as the body coordinate
system that corotates withM1. Two coordinate planes, x0-y0
and x-y, intersect at the line l. The angle between the z axis
and the z0 axis is β and the angle between l and the y axis is
α. And let γ be the angle that the star rotates about z0 axis.
Therefore, two coordinate systems are related by Euler
angles ðα; β; γ ¼ ΩstÞ.

1. The evolution of stellar oscillation

In the corotating frame, the oscillation of the rotating star
is governed by4 [44,51]

∂2ξ

∂t2 þ 2Ωs ×
∂ξ
∂t þ C · ξ ¼ −∇U; ð10Þ

where ξ is the Lagrangian displacement of fluid elements,
and C is a self-adjoint operator. The external gravita-
tional potential U can be expanded in terms of spherical
harmonics

U ¼ −GM2

X
lm

Wlmrls
rlþ1

e−imϕðtÞYlmðθ; ιÞ;

¼ −GM2

X
lmm0

Wlmr0ls
rlþ1

e−imϕðtÞþim0ΩstYlm0 ðθ0; ι0ÞDðlÞ
m0mðα; βÞ;

ð11Þ

where r is the separation between the two stars, ϕðtÞ is the
orbital phase, and rs ¼ r0s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the distance

of fluid element to the origin. Here ðl; mÞ are the angular
quantum numbers of multipole expansion; for example,
l ¼ 0, 1 are the monopole and dipole pieces, which do not
couple to NS internal oscillations, while tidal effects start
from l ¼ 2. Variables θ, ι are the angular coordinates of
fluid elements in the inertial (unprimed) coordinate system;
and θ0; ι0 are in the corotating (primed) coordinate system.
We should note that Ωs is always positive in our con-
vention. The quantity Wlm is given by [86]

Wlm ¼ ð−1ÞðlþmÞ=2
�

4π

2lþ 1
ðlþmÞ!ðl −mÞ!

�
1=2

×
�
2l
�
lþm
2

�
!

�
l −m
2

�
!

�
−1
; ð12Þ

which is nonvanishing only when lþm ¼ even. We have
used the Wigner D functions to transform spherical
harmonics between the unprimed and primed coordinate
systems.
Using the phase-space mode expansion method devel-

oped in Ref. [51], the Lagrangian displacement and its time
derivative can be expressed as

�
ξ
_ξ

�
¼

X
σ

cσðtÞ
�

ξσ
−iωσξσ

�
; ð13Þ

where modes are labeled by σ ¼ ðj; k; ν ¼ �Þ. The
angular quantum numbers j and k are integers with
k ¼ �j;�ðj − 1Þ…0. In our case, the mode functions
with negative k are related to the positive ones by complex
conjugate (up to a constant); therefore, we restrict ourselves
to k ≥ 0. The label ν stands for the propagation direction of
modes, as mentioned in Sec. II A.
The modes in Eq. (13) are normalized by the condition

hξα; ξαi ¼ 1; ð14Þ
where the inner product is defined by

hξσ; ζτi ¼
Z

d3x0ρðx0Þξ�σ · ζτ: ð15Þ

The amplitudes cσðtÞ satisfy the equation

_cσðtÞ þ iωσcσðtÞ ¼ −
i
bσ

hξσ;∇Ui; ð16Þ

FIG. 1. The dependence of f-mode frequencies (in the corotat-
ing frame) on spin for NS with mass 1.4 M⊙, following our
prescription. The H4 EOS, represented by solid lines, gives
ω0; jω2�j ¼ 2π × 1.51 Hz for nonspinning NS, while the Γ ¼ 2
polytrope gives 2π × 1.55 Hz. The frequencies of prograde
(black line) and retrograde (blue line) modes split due to spin.

4Throughout this paper we ignore the effect of dissipation. For
f-modes, the most significant dissipation comes from the GW
radiation of the mode itself, with a damping timescale of ∼0.03 s
[83], which is much longer than the mode period in the corotating
frame. Shear and bulk viscosity due to electron scattering [36],
as well as Urca reactions [84], have even more negligible
effects on the dynamics. Therefore, we also assume that the
background star’s spin is unaffected by the tidal interaction (see
also Ref. [85]).
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where bσ depends on the structure of the star

bσ ¼ hξσ; 2iΩs × ξσi þ 2ωσhξσ; ξσi: ð17Þ
Henceforth, we restrict our discussions to systems where
the spin is antialigned with the orbital angular momentum,
with ðα; βÞ ¼ ð0; πÞ. In this case, the Wigner D functions

reduce to Dð2Þ
m0m ¼ δm0;−m, and Eq. (11) becomes

U ¼ −GM2

X
lm

Wlmrls
rlþ1

e−imðϕþΩstÞYl;−mðθ0; ι0Þ: ð18Þ

Here we focus on ðj ¼ 2; k ¼ 2; 0Þ modes coupled to the
gravitational fields labeled by ðl ¼ 2; m ¼ −2; 0Þ, since
they are the leading order terms in RNS=r, and give the
strongest effects
The amplitudes of these modes are denoted by c0, c2;þ,

and c2;−, where we have suppressed the mode index j. The
equations of motion of these amplitudes are given by

_c0 þ iω0c0 ¼ f0; ð19aÞ

_c2;ν þ iω2;νc2;ν ¼ f2;ν; ð19bÞ

with the driving force f2;ν and f0 given by the rhs of
Eq. (16). In particular, for the f-mode of the Maclaurin
spheroid we know [44,81]

ξ2;2 ¼
1ffiffiffiffiffiffiffiffi
2Isxy

p ½ðx0 þ iy0Þ; iðx0 þ iy0Þ; 0�; ð20aÞ

ξ2;0 ¼ iV

�
−x0 − 2

iΩs

ω0

y0;−y0 þ 2
iΩs

ω0

x0; 2z0
�
; ð20bÞ

where the coefficients V and Isxy ¼ Ixx þ Iyy are determined
by the normalization condition equation (14). Here
Ixx and Iyy are the components of the moment of inertia
Iij ¼

R
ρx0ix

0
jdV

0. We do not provide the expressions of V
and Isxy since they are not needed in the future—in the final
equations of motion, these quantities will be absorbed into
the tidal Love number and f-mode frequency of the NS; see
Eqs. (34), (35), and the text around them. Then we get

f2;� ¼ i
ffiffiffiffiffiffi
Isxy

p
ω2;� þ Ωs

3M2

4
ffiffiffi
2

p
r3

e2iðϕþΩstÞ; ð21aÞ

f0 ¼
−iM2

r3
Ωs

4Vω2
0

: ð21bÞ

In fact, Eq. (21) is not limited to the Maclaurin spheroid.
For a non-Maclaurin NS with low spin, we have [based on
the definition of ðj ¼ 2; k ¼ 2Þ mode]

ξ22 ¼ h22ðrsÞ∇Y22ðθ0; ι0Þ; ð22Þ

where h22ðrsÞ depends on the EOS. This always leads to

f2;� ∼
1

r3
e2iðϕþΩstÞ; ð23Þ

with the coefficient eventually absorbed into tidal Love
numbers. For larger spins, the NS’s j ¼ 2 modes will
couple to the j ≠ 2 tidal gravity field (which are weaker),
and we ignore this coupling in this paper.

2. Orbital evolution

By coupling the orbital motion to the NS modes, one can
write the Hamiltonian of the whole system as [53]

H ¼ p2
r

2μ
þ p2

ϕ

2μr2
−
μMt

r
þ b0ðω0jc0j2 þ if0c�0 − if�0c0Þ

þ
X
ν¼�

b2;νðω2;νjc2;νj2 þ if2;νc�2;ν − if�2;νc2;νÞ; ð24Þ

where μ is the reduced mass and Mt is the total mass.
The generalized coordinates of the system consists of
(r, ϕ, c0, c2;�), and the conjugate momenta (pr, pϕ,
ib0c�0, ib2;�c

�
2;�). From Hamilton’s equations we obtain

the equations of motion

̈r − r _ϕ2 ¼ −
Mt

r2
þ 3ib0

μr
ðc�0f0 − c0f�0Þ

þ
X
ν¼�

3ib2;ν
μr

ðc�2;νf2;ν − c2;νf�2;νÞ; ð25aÞ

rϕ̈þ 2_r _ϕ ¼
X
ν¼�

2b2;ν
μ

ðc�2;νf2;ν þ c2;νf�2;νÞ: ð25bÞ

Equation (19) together with Eq. (25) are a complete set
of equations that describe the conservative evolution of the
inspiraling BNS system. To include the effect of gravita-
tional radiation, we add the Burke-Thorne dissipation term
to the orbital evolution [23]

ai ¼ −
2

5
xj
d5QTotal

ij

dt5
; ð26Þ

where QTotal
ij is the total quadrupole moment of the system

in the inertial frame, which consists of the orbital part and
the stellar part, i.e., QTotal

ij ¼ Qij þ μðxixj − r2δij=3Þ. For
simplicity, we neglect the effect of the radiation reaction on
the mode evolution.
To express Qij in terms of the mode amplitudes, we start

from the definition of the stellar quadrupole moment in the
corotating frame

Q0ij ¼
Z

d3x0ρ
�
x0ix0j −

1

3
r02δij

�
: ð27Þ
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The unperturbed quadrupole moment vanishes under the
axisymmetric assumption. To linear order in perturbation,
we get5 [87]

δQ0ij ¼
Z

d3x0δρ
�
x0ix0j −

1

3
r02δij

�

þ
Z

d3x0∇ ·

�
ρξ

�
x0ix0j −

1

3
r02δij

��

¼
Z

d3x0ρ
�
x0iξ0j þ x0jξ0i −

2r0

3
ξ0rδij

�
; ð28Þ

where we have used δρ ¼ −∇ · ðρξÞ to simplify the
expression. The tensorial components of symmetric trace-
free tensors are related to their harmonic components q0lm
through Clebsch-Gordan coefficients. The transformation
can be expressed in a compact form [88]

δQ0ij ¼ Jijmq0m; ð29aÞ

q0m ¼ ðJijmÞ�δQ0ij; ð29bÞ

where we suppress the index l of q0 since we only consider
l ¼ 2 components, and

J�−2 ¼ J2 ¼
1

2

0
B@

1 i 0

i −1 0

0 0 0

1
CA;

J0 ¼
1ffiffiffi
6

p

0
B@

−1 0 0

0 −1 0

0 0 2

1
CA:

Combining Eqs. (20), (28), and (29b), we obtain

q0�−2 ¼ q02 ¼
ffiffiffiffiffiffiffiffi
2Isxy

p ðc2;þ þ c2;−Þ; ð30aÞ

q00 ¼
ffiffiffi
2

3

r
Vω0

Ωs
ðc0;þ þ c�0;þÞ: ð30bÞ

Note that the harmonic component q02 is a linear
combination of retrograde and prograde modes, which
oscillates at two different mode frequencies. So one can
expect that q02 satisfies a second order differential equation.
So far the expressions are in the corotating frame; to

transform them to the inertial coordinate system, one can
use the relationship between tensor components in the two
frames

Qij ¼ Ri
mR

j
nQ0mn;

where the operator R first rotates Q0mn along the z0 axis by
−Ωst, and does the other rotation along the new x axis by π,
i.e.,

R ¼

0
B@

cosΩst − sinΩst 0

− sinΩst − cosΩst 0

0 0 −1

1
CA:

This results in

q2 ¼ e2iΩstq0−2; ð31aÞ

q0 ¼ q00: ð31bÞ

Plugging Eqs. (30) and (31) into Eq. (25), we finally get

̈r − r _ϕ2 ¼ −
Mt

r2
þ 3M2

2μr4

ffiffiffi
3

2

r
q00 −

9M2

2μr4
Aþ 1

5

ffiffiffi
2

3

r
d5q00
dt5

r

−
2r
5
Re

�
e−2iϕ

d5

dt5
ðq02e−2iΩstÞ

�
−

μ

15

d5r2

dt5
r

−
μr
5
Re

�
e−2iϕ

d5

dt5
ðr2e2iϕÞ

�
; ð32aÞ

rϕ̈þ 2_r _ϕ ¼ 3M2

μr4
B −

2r
5
Im

�
e−2iϕ

d5

dt5
ðq02e−2iΩstÞ

�

−
μr
5
Im

�
e−2iϕ

d5

dt5
ðr2e2iϕÞ

�
; ð32bÞ

q̈02 − 2iω3 _q02 þ ω2
2q

0
2

¼ 3

2

ω2
2λ2M2

r3
e2iϕþ2iΩst −

3M2

2r3
e2iϕþ2iΩst

×
ω2
2λ2ðΩs − ω3Þ

Ω2
s − 2Ωsω3 − ω2

2

�
2 _ϕþ 2Ωs − ω3 þ 3i

_r
r

�
; ð32cÞ

q̈00 þ ω2
0q

0
0 ¼ −

ffiffiffi
3

2

r
ω2
0λ0M2

r3
; ð32dÞ

where we have defined two real variables A and B as

q02e
−2iϕ−2iΩst ¼ Aþ iB: ð33Þ

In Eq. (32), A is proportional to the radial force while B to
the azimuthal torque. We have also defined

λ2 ¼ Isxy=ω2
2; ð34Þ

λ0 ¼ ðIsxy þ 4IzzÞ=ð3ω2
0Þ: ð35Þ

It is straightforward to identify these two quantities as the
Love numbers of the (2,2) and (2,0) modes, respectively.
When deriving Eq. (32), we have assumed the star is

described as a Maclaurin spheroid. Nonetheless, this affects

5The symbol δ on the rhs represents Eulerian perturbation;
however, the symbol on the lhs only means the perturbation of the
integral.
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only the values of the coupling constants, λ0 and λ2. The
form of Eq. (32) holds generically [as we discussed in
Eqs. (22) and (23)]. To generalize the result to a realistic
EOS, one only needs to replace the values of λ0 and λ2
accordingly—our equation of motion is an effective theory
for the evolution of binary systems (without relativistic
corrections). Under the assumption of homogeneity and
incompressibility, the Love numbers become λ0 ¼ λ2 ¼
R5
NS=2 for a nonspinning NS. This leads to k2 ¼ 3=4 [see

Eq. (2) and Ref. [89] ]. However, this value differs
significantly from those obtained from a more realistic
EOS (cf. numbers provided in Sec. II A). Hence in this
paper, we obtain values of λ0 and λ2 by inserting values of
RNS and k2 from H4 and Γ ¼ 2 polytropic EOS into Eq. (2),
and we ignore the spin corrections to them. As a result, our
calculations do not rely on the expressions of the auxiliary
variables we introduced in Eq. (20).
The two frequency parameters ω2 and ω3 in Eq. (32) are

given by

ω2
2 ¼ −ω2þω2−; ð36Þ

ω3 ¼ −
ω2þ þ ω2−

2
: ð37Þ

The minus sign appears in Eq. (36) because ω2� have
opposite signs. As discussed in the last subsection, we
assume the mode frequencies dependence on Ωs, given in
Eqs. (6), is still valid, which implies

ω3 ¼ Ωs; ð38Þ

and the second term on the rhs of Eq. (32c) vanishes in
our case.
We can see that Eq. (32) reduces to the conventional

mode-orbit equations when Ωs → 0 [cf. Eq. (6) of
Ref. [23] ]. As discussed by Ref. [23], high order time
derivatives in the radiation-reaction terms can be lowered
by repeatedly replacing the second time derivatives by
contributions from the conservative part alone. In this way,
Eq. (32) becomes a set of second order ordinary differential
equations.

III. MODEL OF DT: STELLAR OSCILLATIONS

As we have discussed in the Introduction, both L94 [36]
and FR07 [53] focused on the total change in the orbital
phase when the system evolves through a DT resonance.
This is because for g- and/or r-modes that have weak tidal
couplings, only the resonant regime plays a significant role
in affecting the orbital evolution. On the other hand,
Hþ 16 [54,55] proposed an EOB formalism to study
the strongly tidal-coupled f-mode by introducing an
effective Love number, which works well when the driving
frequency is comparable yet still less than the eigenfre-
quency of the f-mode. In this and the next sections, we will

use semianalytic methods to carry out a systematic study of
DT, and provide an alternative way to describe the full
dynamics of DT, including both stellar and orbital evolu-
tions. This section mainly focuses on the stellar part, where
we extend Hþ 16 [54,55] and find analytic solutions of
stellar evolution that are valid in all regimes (adiabatic,
resonant, and postresonance) and for arbitrary spins. With
the new analytic expressions, we can have a better under-
standing on DT. We first review the approximations
presented in L94 [36] and Hþ 16 [54,55] in Sec. III A,
and then in Sec. III B we propose our new approximations
and compare them with numerical integrations. In the
next section (Sec. IV), we will apply our approximation
to describe tidal backreaction.

A. Previous studies on DT

As studied in L94 [36], the (2,2) mode q02 in a non-
spinning NS can be treated as a harmonic oscillator driven
by tidal force

q̈02 þ ω2
2q

0
2 ¼

3

2

ω2
2λ2M2

r3
e2iϕ: ð39Þ

When the orbital frequency Ω ≪ ω2, the NS adiabatically
follows the tidal driving, with its main time dependence
given by e2iϕ. Therefore it is appropriate to define a variable
b ¼ q02e

−2iϕ, which satisfies

b̈þ 4iΩ _bþ ðω2
2 − 4Ω2Þb ¼ 3

2

ω2
2λ2M2

r3
: ð40Þ

Here we have ignored the time derivative of orbital fre-
quency since its rate of change due to GW radiation is small
compared with other variables. Note that the quantity
Aþ iB we defined in the last section reduces to b when
the spinvanishes. Since themajor time dependence e−2iϕ has
been factored out,we have b̈ ≪ 4Ω _b ≪ ðω2

2 − 4Ω2Þb, and it
is safe to ignore b̈ and _b, leading to thewell-known adiabatic
approximation

b ¼ 3ω2
2λ2M2

2r3
1

ω2
2 − 4Ω2

: ð41Þ

As Ω approaches ω2=2, the mode gets resonantly excited.
L94 [36] assumed that near resonance, the mode mainly
oscillates at its natural frequency ω2, so they defined
a slowly varying complex amplitude c ¼ q02e

−iω2t, which
satisfies6

c̈þ 2iω2 _c ¼ 3

2

ω2
2λ2M2

r3
e2iϕ−iω2t: ð42Þ

6The other term proportional to q02e
iω2t doesn’t contribute to

SPA in Eq. (44).
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Similarly, by neglecting c̈, this equation can be solved as

c ¼ 3

4iω2

Z
t ω2

2λ2M2

r03
e2iϕ

0−iω2t0dt0; ð43Þ

which can in turn be evaluated with SPA, giving the
postresonance amplitude:

jcj ¼ 3

4ω2

ω2
2λ2M2

r3r

ffiffiffiffiffiffi
π
_Ωr

r
: ð44Þ

Hereafter, we use the subscript r to refer to the point of
resonance. As we can see, the treatment in L94 [36] is
piecewise: they separated out distinct time dependence in
different regimes. This is enough for evaluating the energy
and angular momentum transfers from orbital motion to the
NS mode since they only depend on the postresonance
amplitude. However, neither the detailed time evolution of
the mode nor the orbital dynamics in the resonant regime
were provided.
L94 [36] was improved by Hþ 16 [54,55], who solved

Eq. (39) with the Green function, obtaining

q02ðtÞ ¼
3

2ω2

Z
t ω2

2λ2M2

r03
e2iϕ

0
sinω2ðt − t0Þdt0: ð45Þ

Near resonance, Eq. (45) reduces to Eq. (43) if one writes
sinω2ðt − t0Þ ¼ 1

2i ½e2iω2ðt−t0Þ − e−2iω2ðt−t0Þ� and neglects the
term that does not contribute to SPA. However, Eq. (45) is
exact in all regimes. This lays the foundation to obtain a
single continuous function to represent the stellar motion
during DT. Instead of using SPA to get the final amplitude
of the mode, Hþ 16 [54,55] expanded the integrand in
Eq. (43) near resonance

c ¼ 3

4iω2

ω2
2λ2M2

r3r

Z
t
ei _Ωrðt0−trÞ2t0; ð46Þ

which becomes a Fresnel function. This approximation is
accurate within the duration of the resonance Tdur

jt − trj ≪ Tdur; ð47Þ

where Tdur ¼
ffiffiffiffi
π
_Ωr

q
. They then asymptotically matched

Eq. (46) to Eq. (41). More specifically, they first observed
that Eq. (41) diverges as ðt − trÞ−1 as Ω → ω2=2

be2iϕ−iω2t ∼ −M2λ2ω
2
2

3

8ω2r3r

e2iϕr−iω2t

_Ωrðt − trÞ
: ð48Þ

Hþ 16 [54,55] used the rhs of Eq. (48) as a counterterm:
they added the adiabatic solution in Eq. (41) and the
resonant one in Eq. (46) up and then subtracted the
counterterm. In this way, the divergence is cured, and

the sum has the correct asymptotic behavior in both the
adiabatic and resonant regimes. This new solution cannot
describe the postresonance evolution, as is expected
because the asymptotic behavior in that regime was not
yet considered. As pointed out in the Introduction, this
approximation is sufficient for nonspinning NS if the
postresonance regime is short. However, for highly spin-
ning systems, we must extend this method to the post-
resonance regime.

B. New approximation and numerical comparisons

Let us start from the equation that governs the (2,2) mode
[Eq. (32c)]. By defining x ¼ q02e

−iΩst, it becomes

ẍþ ζ2x ¼ 3

2

ω2
2λ2M2

r3
e2iϕþiΩst; ð49Þ

where

ζ2 ¼ Ω2
s þ ω2

2: ð50Þ

Note that the second term on the rhs of Eq. (32c) vanishes
because ω3 ¼ Ωs [Eq. (38)]. The resonance is determined
by the condition

_ϕ ¼ Ωr ¼
ζ −Ωs

2
: ð51Þ

Under the assumed ω2 −Ωs relation, ζ can be simplified to
ðωþ − ω−Þ=2, then we have

_ϕ ¼ Ωr ¼ −Ωs −
ω2−

2
; ð52Þ

but here we keep ζ for generality. Equation (52) shows that
only the retrograde mode is excited. The dependence of Ωr
on Ωs is shown in Fig. 2.
By incorporating spin into procedures discussed in

the previous subsection, Hþ 16’s result [54,55] can be
written as

AðtÞ ¼ 3M2λ2ω
2
2

2r3
1

ζ2 − ðΩs þ 2ΩÞ2 þ
3M2λ2ω

2
2

8

ffiffiffiffiffiffi
_Ωr

q
ζr3r

1

t̂

þ 3M2λ2ω
2
2

4r3rζ

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r �
−

1ffiffiffi
2

p sin

�
t̂2 −

π

4

�

− FC

� ffiffiffi
2

π

r
t̂

�
sin t̂2 þ FS

� ffiffiffi
2

π

r
t̂

�
cos t̂2

�
; ð53aÞ

BðtÞ ¼ 3M2λ2ω
2
2

4r3rζ

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r �
−

1ffiffiffi
2

p sin

�
t̂2 þ π

4

�

− FC

� ffiffiffi
2

π

r
t̂

�
cos t̂2 − FS

� ffiffiffi
2

π

r
t̂

�
sin t̂2

�
; ð53bÞ
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where variables A and B are defined in Eq. (33). We can see
that the phase of A and B’s oscillations is governed by

t̂ ¼
ffiffiffiffiffiffi
_Ωr

q
ðt − trÞ: ð54Þ

FC and FS in Eq. (53) are Fresnel functions defined asR
t̂
−∞sins2ds¼ ffiffiffiffiffiffiffiffi

π=8
p ½1þ2FSðt̂ ffiffiffiffiffiffiffiffi

2=π
p Þ� and R

t̂
−∞ cos s2ds ¼ffiffiffiffiffiffiffiffi

π=8
p ½1þ 2FCðt̂ ffiffiffiffiffiffiffiffi

2=π
p Þ�.

To check the accuracies of these formulas, we compare
them with numerical integrations of Eq. (32). We choose
the H4 EOS and spin frequency of 550 Hz. This gives
e0 ¼ 0.63, ω0 ¼ 2π × 1.71 kHz, ωþ ¼ 2π × 0.59 kHz,
and ω− ¼ −2π × 1.69 kHz. Equation (51) indicates that
resonance happens at the orbital angular frequency
2π × 0.30 kHz. Using these numbers, we solve Eq. (32)
numerically with the following initial conditions:

_ϕð0Þ ¼ 2πF0 ¼ 2π × 18 Hz; rð0Þ ¼
�

Mt

_ϕð0Þ2

�
1=3

;

_rð0Þ ¼ −
64

5
η

�
Mt

rð0Þ

�
3

; qð0Þ0 ¼ −M2λ0

ffiffiffi
3

2

r
1

r30
;

_qð0Þ0 ¼ −3
_rð0Þr

rð0Þr

qð0Þ0 ; Að0Þ ¼ 3M2λ2ω
2
2

2rð0Þ3
1

ζ2 − ð2 _ϕð0Þ þΩsÞ2
;

_Að0Þ ¼ 0; Bð0Þ ¼ 0; _Bð0Þ ¼ 0: ð55Þ

The evaluation of Eq. (53) requires the information of
orbital evolution, like rðtÞ,ΩðtÞ, and _Ωr. Here we take them
from the numerical integrations (with tidal backreaction).
In Fig. 3, we plot the numerical solutions (red) versus
predictions of Eq. (53) (black). Dimensionless variables Ã
and B̃ are defined by

Ã ¼ 3

2

A
R3
NS

; B̃ ¼ 3

2

B
R3
NS

: ð56Þ

The vertical dashed line labels the time of resonance.
We can see that Eq. (53) can describe preresonance
evolutions of A and B to a high accuracy, despite
a small discrepancy in Ã at tr. They smoothly connect
the adiabatic and resonant regimes. In the postresonance
regime, the formulas give the correct amplitude of
mode oscillation, same as L94 [36], but do not predict
the correct phasing of postresonance oscillation. Let us
attempt to improve the treatment in Hþ 16 [54,55], in
several steps.
The postresonance oscillation can be viewed as trigo-

nometric functions modulated by Fresnel functions FC and
FS. In this regime, FC and FS both approach 1=2 when
t̂ → ∞, Eq. (53) then predicts

FIG. 2. The resonant GW frequency (2Ωr) as functions of spin
frequency for two EOSs. We also plot the contact GW frequency
as a red dashed line for comparison. The retrograde mode
frequency is shifted by spin to a smaller value, which makes
DT possible during the inspiral.

FIG. 3. Dimensionless quadrupole moments [normalized
by R3

NS in Eq. (56)] induced by DT as functions of time.
Red curves are results from fully numerical evolution and black
curves are from Eqs. (53). The vertical dashed blue line denotes
the time of resonance. Equation (53) is accurate in the prereso-
nance regime, but fails to describe the phasing of postresonance
oscillation.
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A ∼
3M2λ2ω

2
2

4r3rζ

ffiffiffiffiffiffi
π
_Ωr

r
cos

�
t̂2 þ π

4

�
; ð57aÞ

B ∼ −
3M2λ2ω

2
2

4r3rζ

ffiffiffiffiffiffi
π
_Ωr

r
sin

�
t̂2 þ π

4

�
; ð57bÞ

which lead to

x ∼
3M2λ2ω

2
2

4r3rζ

ffiffiffiffiffiffi
π
_Ωr

r
e−it̂

2−iπ=4þ2iϕþiΩst: ð58Þ

However, as pointed out by L94 [36], x should oscillate at its
eigenfrequency ζ in the postresonance regime. Re-writing
the phase of x in Eq. (58) as ð2ϕ − ζtþ Ωst − t̂2Þ þ
ζt − π=4, it is straightforward to see that the term in the
bracket is supposed to vanish in order to meet this require-
ment. Therefore we can attempt to replace all t̂2 in trigono-
metric functions in Eq. (53) by

Θ ¼ −χr − ζtþ 2ϕþ Ωst; ð59Þ

where χr ¼ 2ϕr − ζtr þ Ωstr. The constant χr is chosen so
thatΘ is 0 at tr to match t̂. Note that t̂2 is the leading order of
Taylor expansion ofΘ around tr. Figure 4 shows the result of
our new approximation, which gives the correct phasing in
the postresonance regime, but still fails to explain the
amplitude of the first cycle as well as the evolution in the
adiabatic regime.
These undesired features can be cured by making a

further change to the counterterm equation (48) and adding
a new term to B, resulting in

A ¼ 3M2λ2ω
2
2

2r3
1

ζ2 − ð2ΩþΩsÞ2
þ 3M2λ2ω

2
2

8

ffiffiffiffiffiffi
_Ωr

q
ζr3r

cosðt̂2 − ΘÞ
t̂

þ 3M2λ2ω
2
2

4r3rζ _Ωr

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r �
−

1ffiffiffi
2

p sin

�
Θ −

π

4

�

− FC

� ffiffiffi
2

π

r
t̂

�
sinΘþ FS

� ffiffiffi
2

π

r
t̂

�
cosΘ

�
; ð60aÞ

B ¼ 3M2λ2ω
2
2

8r3rζ
ffiffiffiffiffiffi
_Ωr

q sinðt̂2 − ΘÞ
t̂

þ 3M2λ2ω
2
2

4r3rζ

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r �
−

1ffiffiffi
2

p sin

�
Θþ π

4

�

− FC

� ffiffiffi
2

π

r
t̂

�
cosΘ − FS

� ffiffiffi
2

π

r
t̂

�
sinΘ

�
: ð60bÞ

We refer the interested readers to the Appendix for
detailed derivations. The new expressions still need orbital
information as input. For example, one cannot obtain AðtÞ
and BðtÞ without the knowledge of _Ωr, tr and so on. In the
next section, we will combine our new formulas with
orbital evolutions to give analytic estimations on these
parameters.
Results from Eq. (60) are plotted as blue dots in Fig. 5,

and compared with numerical solutions (red lines). We can
see that our new results are more accurate. In comparison
with Hþ 16 [54,55], the second term in the first line of
Eq. (60a) is multiplied by cosðt̂2 − ΘÞ. The modification
can be understood as follows. The adiabatic term, i.e., the
first term in Eq. (60a), diverges as the system reaches
the resonance point. Hþ 16 [54,55] chose Eq. (48) as the
counterterm to cancel the undesired infinity. Our better
counterterm, cosðt̂2 − ΘÞ=t̂, not only diverges as 1=t̂, but
also has the correct oscillatory behavior. This cures the
problems shown in Fig. 4. In B, we have a new term
∼ sinðt̂2 − ΘÞ=t̂ [the first line in Eq. (60b)], which vanishes
both as jtrj → ∞ and at tr (recall that limx→0 sin x3=x ¼ 0,
hence no infinity issue at tr), and therefore does not modify
the asymptotic behaviors of B in the adiabatic or in the
postresonance regimes.
In comparison with Fig. 4, changes in Fig. 5 not only

cancel the undesired features in the adiabatic regime, but
also move the first cycle of postresonance evolution
downward to match the amplitude. Prior to resonance, A
gradually grows while B remains 0. Approximately, the
resonance time is the local maximum of A, but the value of
A on resonance is less than its final amplitude, only
reaching it after one cycle. The evolution of B is similar
but lags behind A. Although Eq. (60a) predicts slightly
larger A in the resonant regime, they are accurate enough
for the purpose of studying the tidal backreaction onto the
orbital motion, as we shall see in the next section.

FIG. 4. Time evolution of dimensionless quadrupole moment
Ã. The black line represents the formula in Eq. (53) with t̂2 that
appears in trigonometric functions replaced by Θ [Eq. (59)],
while the red line is from numerical integrations. The vertical
dashed line is the time of resonance. This modification gives the
correct postresonance phasing, but does not give accurate
postresonance amplitude or adiabatic evolution.
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If one wants to obtain more accurate expressions,
especially to remove the discrepancy near resonance, a
higher order correction can be made by adding

ΔAðtÞ ¼ 3M2λ2ω
2
2

16ζr3r

ffiffiffiffiffiffi
_Ωr

q sinðt̂2 − ΘÞ
t̂3

ð61Þ

into Eq. (60a). Readers can find derivations in the
Appendix. The result is shown in Fig. 5 with black
triangles, where we can see the formula with higher order
correction gives a more accurate description on A near tr.
To quantify the accuracies of the analytic results, we

calculate the values of A and B at tr

Ar¼
3M2λ2ω

2
2

8ζr3r

� ffiffiffiffiffiffiffiffi
π

2 _Ωr

r
þ 3

_Ωr

_rr
rr
þ1

ζ

�
þM2λ2ω

2
2

8ζr3r

Ω̈r

_Ω2
r

; ð62aÞ

Br ¼ −
3M2λ2ω

2
2

8ζr3r

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r
; ð62bÞ

where the last term in Ar comes from the higher order
correction equation (61). It is interesting to see that Br is
equal to half of the final amplitude [cf. Eq. (57b)]. For
completeness, we also list q0 below

q0 ¼ −M2λ0

ffiffiffi
3

2

r
1

r3
; ð63Þ

which comes from the adiabatic approximation. These
values are compared with numerical results in Table I,
which shows that our analytic results of Awith higher order
corrections and B only differ from numerical results by
several percents. We can see the error decreases as spin
rises. We also compare the formula of A without the higher
correction Eq. (61); errors are around tens of percents.
Hence, the correction is important if we require high
accuracy around the resonance.
Finally, we want to note that discussions in this sub-

section may not be useful in practice, because one can get
tidal evolution by directly integrating Eq. (32). However,
the structure of Eq. (60) helps us gain more physical
insights, especially after combining with orbital dynamics
in the next section.

IV. MODEL OF DT: ORBITAL DYNAMICS
NEAR RESONANCE

In this section we will discuss the postresonance orbital
dynamics. As we will review in Sec. IVA, currently there
are mainly two analytic approximations to DTs: the method
of averaged PP orbit in FR07 [53] and the method of the
effective Love number in Hþ 16 [54,55]. Here we provide
an alternative way to describe the postresonance dynamics.
In Sec. IV B, we derive a set of first order differential
equations for osculating variables: the Runge-Lenz vector
(whose magnitude is proportional to the eccentricity of the
orbit), angular momentum, and the orbital phase. These
equations, with our new formulas for A and B [Eq. (60)],
are self-contained except that they need _Ωr as input. But as
wewill discuss in Sec. IV C, osculating equations lead to an
analytic expression (or more accurately, a quintic equation)
for _Ωr, which is accurate for the systems we study.
Therefore, we do not need to use nontidal orbit as a prior

FIG. 5. Same as Fig. 3, but the numerical solutions are
compared with Eqs. (60) and (61). The formula of B̃ is already
accurate enough to fit the numerical results. While the formula of
Ãwithout higher order correction (blue dots) predicts larger value
near tr. The problem is fixed after the inclusion of Eq. (61), which
we plot as black triangles.

TABLE I. Relative errors of Eqs. (62) and (63) for different
spins, where “High” and “Low” means including and not
including the higher order correction equation (61), respectively.

Ωs=ð2πÞ jΔq0j=q0 jΔAj=A ð×1%Þ jΔBj=B
(Hz) ð×0.1%Þ High Low ð×1%Þ

550 0.2 0.2 13.1 1.4
450 1.3 1.1 14.0 0.6
350 4.0 2.2 14.4 0.1
250 8.7 3.2 14.4 0.8
150 15.1 4.0 14.4 1.4
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knowledge to feed into the formula of A and B. Then in
Sec. IV D, we compare our analyses and the method of the
effective Love number with fully numerical results. Finally
in Sec. IV E, we propose an alternative way to obtain the
postresonance PP orbit, which turns out to agree with FR07
[53] to the leading order in tidal interaction. By combining
our approach and FR07 [53], we derive an analytic
expression for tr, i.e., the time of resonance.

A. Review of previous works

The model in FR07 [53] is based on the fact that the
DT only causes significant energy and angular momentum
transfers to the star near resonance within the time

Δt ¼ ΔL
_LGW

; ð64Þ

where ΔL is the angular momentum transfer from the orbit
to the star due to resonance and _LGW is the rate at which
angular momentum radiated in GWs [90]

_LGW ¼ 32

5
μ2

Mt
5=2

r7=2r

: ð65Þ

We note that rr in Eq. (65) should be the actual separation
of the star at tr, instead of the one predicted by prereso-
nance PP orbit. After resonance, the NS is treated as freely
oscillating, with the interaction between the star and the
orbit neglected, and the postresonance orbit is another PP
trajectory. The pre- and postresonance orbital separations
are related by the time shift Δt

rðtÞ ¼
�
rPPðtÞ t − tr ≪ Tdur;

rPPðtþ ΔtÞ t − tr ≫ Tdur;
ð66Þ

where Tdur comes from the same reasoning that leads to
Eq. (47). We can see that this method is based on the
estimation of time shift Δt due to resonance, where the
nontide _LGW is used. We will discuss these in details in
Sec. IV E.
A more detailed model was developed in Hþ 16

[54,55], where the authors incorporated DT to the EOB
formalism by introducing an effective Love number λeff, as
defined in Eq. (1). This quantity is based on the nontidal
orbit as a prior knowledge, and does not incorporate the
imaginary part of q02e

−2iϕ−2iΩst. In fact, with the help of
Eq. (29), the effective Love number can be written in our
notation as

λeff ¼ −
r3

2M2

Reðq02e−2iϕ−2iΩstÞ ¼ −
r3

2M2

A: ð67Þ

This term does not contain the full information of the NS
oscillation, since B is missing. By comparing this term with

the rhs of Eq. (32), one can find that the effective Love
number only describes the radial force due to the star’s
deformation. The ignored part, which characterizes the
torque between the star and the orbit, actually plays an
important role, as we shall see in Sec. IV D. Furthermore,
their calculations of the effective Love number were
obtained from nontidal orbital evolution. This will cause
inaccuracy when the spin is large.

B. Osculating equations

Since the traditional method of osculating orbits
(cf. Ref. [90]) is singular for vanishing orbital eccentricity,
we need to adopt a special perturbation method here [91].
This method uses specific angular momentum h, the Runge-
Lenz vector ϵ, and the orbital phaseϕ as osculating variables.
Assume that the perturbation force F is described by

F
μ
¼ Wnþ Sλ; ð68Þ

where n is the unit vector along the radial direction and λ
the unit vector along the azimuthal direction. W and S are
the components of the acceleration. Equations of motion in
terms of the osculating variables are given by

dh
dt

¼ r × F;

dϵ
dt

¼ F × hþ _r × _h;

dϕ
dt

¼ h
r2

: ð69Þ

Note that the magnitude of ϵ is proportional to the orbital
eccentricity. In our case, only the z component of h,
denoted by h, and in-plane components of ϵ ¼ ðϵr; ϵϕÞ
matter. The orbital separation r, and its rate of change _r, can
be expressed as

r ¼ h2

Mt þ ϵr
; ð70aÞ

_r ¼ −
ϵϕ
h
: ð70bÞ

Equations of motion of the osculating variables can then
be rewritten as

dϕ
dt

¼ h
r2
; ð71aÞ

dh
dt

¼ rS; ð71bÞ
dϵr
dt

¼ h
r2
ϵϕ þ 2Sh; ð71cÞ

dϵϕ
dt

¼ −
h
r2

ϵr −Wh − _rrS: ð71dÞ
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The perturbation forces S and W can be separated into
radiation and tidal parts. The former comes from the Burke-
Thorne radiation-reaction potential. By neglecting tidal
corrections, they are given by

Worb ¼
2

5
μ

�
32Mt

2 _r
3r4

þ 48Mt _r _ϕ
2

r
þ 8Mt _r3

r3

�
; ð72aÞ

Sorb ¼
2

5
Mtμ

�
8Mt

_ϕ

r3
þ 36_r2 _ϕ

r2
− 24 _ϕ3

�
: ð72bÞ

The tidal perturbation forces W tid and Stid are given by

W tid ¼
3M2

2μ

ðMt þ ϵrÞ4
h8

� ffiffiffi
3

2

r
q0 − 3A

�
; ð73aÞ

Stid ¼
3M2

μ
B
ðMt þ ϵrÞ4

h8
: ð73bÞ

For the time evolution of q0, A, and Bwe use our analytic
formulas, as shown in Eqs. (60) and (63). Here we do not
include the higher order correction to A in Eq. (61) since the
leading order already turns out to be accurate enough. By
plugging Eq. (70) into the equations above we get

dϕ
dt

¼ ðMt þ ϵrÞ2
h3

; ð74aÞ

dh
dh

¼ 2

5
Mtμ

ðMt þ ϵrÞ3
h7

½8MtðMt þ ϵrÞ þ 36ϵ2ϕ − 24ðMt þ ϵrÞ2� þ
h2

Mt þ ϵr
Stid; ð74bÞ

dϵr
dt

¼ 2hStid þ
ðMt þ ϵrÞ2

h3
ϵϕ þ

4

5
Mtμ

ðMt þ ϵrÞ4
h8

½8MtðMt þ ϵrÞ þ 36ϵ2ϕ − 24ðMt þ ϵrÞ2�; ð74cÞ

dϵϕ
dt

¼ −hW tid þ
hϵϕ

Mt þ ϵr
Stid − ϵr

ðMt þ ϵrÞ2
h3

þ 2

5
μMtϵϕ

ðMt þ ϵrÞ3
h8

�
56Mt

3
ðMt þ ϵrÞ þ 24ðMt þ ϵrÞ2 þ 44ϵ2ϕ

�
: ð74dÞ

Equations (72)–(74) are a complete set of equations of
ϕ; h; ϵr, and ϵϕ, except that we are missing the value of _Ωr

that appears in the formulas of A and B. This will be
determined in Sec. IV C. With these at hand, one can obtain
the postresonance orbital dynamics without solving tidal
variables (e.g., q0, A, and B) simultaneously.
In practice, we numerically evolve the system slightly

after the resonance point, i.e., tr þ δ, to get rid of the
numerical infinity due to the term sinðt̂2 − ΘÞ=t̂ in B. In our
code, δ ¼ 10−8 s. Two infinities in A (adiabatic term and
the counterterm) need more care. The cancellation of these
two infinities requires they have the exact the same
behavior near the resonance point, this is difficult to
achieve in practice, especially when there are osculating
variables in A. In our simulations, we approximate the first
divergence term by the following formula:

3M2λ2ω
2
2

2r3
1

ζ2 − ð2Ωþ ΩsÞ2
¼ −

3M2λ2ω
2
2

8

ffiffiffiffiffiffi
_Ωr

q
ζr3t̂

; ð75Þ

where the denominator is expanded around tr. In this
manner, both divergence terms go to infinity as 1=t̂, so they
cancel each other nicely. In order to improve the accuracy,
one can include more terms of the Taylor expansion.
However, this only works well for low spin, since the

time for postresonance evolution should be short enough
such that the series converges. For high spin we only keep
the leading term.7

We should note that one can evolve the postresonance
system without knowing the value of tr, of which our
analytic estimations are not very accurate in some regimes
of spin (we will discuss the estimation on it in Sec. IV D),
since the formulas of AðtÞ and BðtÞ only depend on t̂. One
can shift the time of resonance to t ¼ 0 and simultaneously
set tr ¼ 0. Similarly, the orbital phase of the resonance ϕr
in Eq. (59) can be eliminated by an appropriate initial
condition for ϕ, here we choose ϕr ¼ 0 and ϕð0Þ ¼ 0,
where ϕð0Þ is the initial value of ϕ. Correspondingly, the
constant χr becomes 0. What remains unknown in the
osculating equations are _Ωr and the initial conditions for
ðϵr;ϕ; h;ϕÞ. We will address them in the next subsection.

C. The applications of osculating equations

In this subsection, we will discuss the applications of
osculating equations introduced in the previous subsection.

7As we shall see in Sec. IV D, the orbital frequency is
oscillatory for high spin in the postresonance regime. Under this
situation, the leading term alone is more accurate than including
higher order corrections.
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1. Orbit at resonance

Let us first derive algebraic equations for _Ωr, _rr, and the
initial conditions of Eq. (74). The basic idea is that
variables like _Ωr and _rr at resonance are determined by
the tidal variables A and B through the osculating equa-
tions. Conversely, A and B are governed by _Ωr in Eq. (62).
The relationship allows us to write down equations of _Ωr
and _rr.
To calculate _r, we start with Eq. (70a). In our cases, the

value of ϵr rises as the spin of the NS decrease, but it
remains a small number. So we can approximate r by
h2=Mt. Using the equation of _h [Eq. (74b)], we get

dr
dt

¼ 2

ffiffiffiffiffiffi
r3

Mt

s
S: ð76Þ

For a quasicircular orbit, the radius and orbital frequency
approximately satisfy

rr ¼
�
Mt

Ω2
r

�
1=3

: ð77Þ

In Table II we verify that the error of Eq. (77) is less than
0.4% within the regime we are concerned with. With this
observation, together with Br in Eqs. (62), one can simplify
the expression of S into

S¼ StidþSorb

¼−
3M2

2λ2
μζ

3ω2
2

8r7r

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r
þ4

5
MtμΩr

�
18_r2r
r2r

−8Ω2
r

�
; ð78Þ

which is completely determined by _rr and _Ωr. Substituting
this into Eq. (76) leads to an equation for _rr and _Ωr

_rr ¼ −
3M2

2λ2
Ωrμζ

3ω2
2

4r7r

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r
þ 8

5
Mtμ

�
18_r2r
r2r

− 8Ω2
r

�
: ð79Þ

In order to solve for these two variables, one can use
Eqs. (71a) and (71b) to establish another equation

_Ωr ¼
_h
r2r

− 2
_rr
r3r

h ¼ S
rr

− 2Ωr
_rr
rr
; ð80Þ

which gives

2rr _Ωr ¼ −3Ωr _rr: ð81Þ

This relation can also be directly obtained by differentiating
Eq. (77). Plugging Eq. (81) back into Eq. (79) gives a
quintic function for _Ωr. The calculation can be simplified
by the approximation _rr=rr ≪ Ωr, so that the first term in
the bracket of Eq. (79) can be neglected. In this manner, we
obtain an explicit expression for _Ωr:

_Ωr ¼
�
u
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
−
v3

27

r �1=3

þ
�
u
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

4
−
v3

27

r �1=3

; ð82Þ

where

u¼ 27M2
2λω2

2

8r8rζμ

ffiffiffi
π

2

r
; v¼ 96Mtμ

5rr
Ω3

r ¼
3

μr2r
_LðrÞ
GW: ð83Þ

Equation (82) can be further simplified by Taylor expand-
ing in w, defined by

w ¼ 21=3v

3u2=3
; ð84Þ

leading to

_Ωr ¼ u2=3
�
1þ 22=3wþ w2 −

w3

3
þOðw4Þ

�
: ð85Þ

Recall that the duration of the resonance is Tdur ¼
ffiffiffiffiffiffiffiffiffiffiffi
π= _Ωr

q
[Eqs. (47) and (66)], Eq. (85) is in fact an analytic relation
between Tdur and the orbital time shift Δt due to resonance.
The variable _rr is determined once _Ωr is known. Finally,
the initial value of ϵϕ is related to _rr through its definition in

Eq. (70b). With the values of _Ωr and _rr, Eq. (60) for
AðtÞ and BðtÞ does not require input from numerical
integrations.
In Table II, we compare predictions of our formulas with

numerical results. The parameters of NSs are the H4 EOS
with component masses ð1.4; 1.4Þ M⊙. Results show that
the accuracies of our analyses are higher than 93%. We can
also see that accuracy is lower for low spins. Since Hþ 16

[54,55] used nontidal _Ωr in the effective Love number, we

TABLE II. Comparisons between results from our formulas for
_Ωr, _r, ϵϕ, r and numerical integrations, where “Numerical

results” of Δ _Ωr= _Ωr are the results by numerical solving Eqs. (79)
and (81); “Approximate results” are the results of Eq. (85). The
parameters of NSs are still the H4 EOS with component masses
ð1.4; 1.4Þ M⊙. The relative error becomes large when the spin
decreases. The last column is the ratio of the nontidal _Ωr to the
realistic _Ωr when the orbital frequencies satisfy the resonance
condition in Eq. (51).

Δ _Ωr= _Ωrð×10−2Þ
Ωs=ð2πÞ
(Hz)

Numerical
results

Approximate
results

Δ_r=_r
ð×10−2Þ

Δϵϕ=ϵϕ
ð×10−2Þ

Δr=r
ð×10−2Þ _Ωnon

r
_Ωtide
r

550 0.9 0.8 0.4 0.1 0.1 0.56
450 2.7 2.7 1.6 1.8 0.2 0.53
350 4.4 4.5 2.7 2.2 0.3 0.52
250 5.9 6.1 3.7 3.0 0.4 0.52
150 7.1 7.3 4.5 3.6 0.4 0.52
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compare _Ωr of nontidal orbits with realistic ones. The ratios
of two quantities are shown in the last column of Table II;
we can see that _Ωnon

r is only half of _Ωtide
r . Hence, the use of

_Ωnon
r will cause inaccuracies.

2. Angular momentum and energy transfers

Another application of the osculating equations is to
calculate the angular momentum and energy exchange
between the star and the orbit. The transfer in L can be
directly calculated from Eq. (71b). Following the procedure
in Ref. [36], we get

ΔL ¼ −μht ¼ −
Z

μrStiddt ¼ −
Z

3M2

B
r3
dt

¼ −Im
Z

3M2

q02e
−2iϕ−2iΩst

r3
dt

¼ −
2

μω2
2λ2

Im
Z

q02ðq̈0−2 þ 2iΩs _q0−2 þ ω2
2q

0
−2Þdt

¼ −
2

μω2
2λ2

½ _AB − _BA − ðA2 þ B2ÞðΩs þ 2ΩÞ�; ð86Þ

wherewe have used Eq. (32c). Assuming the deformation of
the star is small initially, this exact formula gives the angular
momentum deposited in the star. In fact, the quantity is the
generalization of the “tidal spin”, defined by (up to a
constant) ϵijsQmi _Qjm for a nonspinning star [54].
By combining our formulas for A and B with the ΔL

shown above, one can obtain a lengthy expression of
angular momentum transfer as a function of time, but little
can be learned from it. To give a more useful description,
we follow the idea of FR07 [53], who assumed the net
transfer only takes place near resonance. Within the
postresonance regime, ΔL is periodic and the net transfer
is zero. In fact, we can see this clearly with the asymptotic
behavior of A and B. From Eq. (60) we know

A ∼
3M2λ2ω

2
2

4r3rζ

ffiffiffiffiffiffi
π
_Ωr

r
cos

�
χr þ ζt − 2ϕ −Ωst −

π

4

�
; ð87aÞ

B ∼
3M2λ2ω

2
2

4r3rζ

ffiffiffiffiffiffi
π
_Ωr

r
sin

�
χr þ ζt − 2ϕ −Ωst −

π

4

�
; ð87bÞ

where we have used the fact that the Fresnel functions go to
1=2 as t̂ → ∞. Plugging the above equations into Eq. (86)
and averaging over the orbital phase, we get the net angular
momentum transfer as

ΔL ¼ 9M2
2πλ2ω

2
2

8 _Ωrr6rζ
: ð88Þ

This formula reduces to the result in L94 [36] when spin
vanishes. The energy transfer is related to the angular
momentum transfer by

ΔE ¼ ΩrΔL: ð89Þ

By the expression of ΔL in Eq. (88), variables u and w
defined in Eqs. (83) and (84) can be expressed as

u ¼ 9Ω2
rffiffiffiffiffiffi

2π
p ΔL

Lr

_LðrÞ
GW

Lr
; w ¼

�
2

81

Torb

Δt
Lr

ΔL

�
1=3

; ð90Þ

with Torb ¼ 2πΩr and Lr the orbital angular momentum at
resonance.

D. Comparisons with numerical results

In this subsection we will compare our approximations,
as well as the method of an effective Love number in
Hþ 16 [54,55], with fully numerical results, in the post-
resonance regime. We still choose the H4 EOS with spin
frequencies 300 and 550 Hz.

1. Validating osculating equations

We numerically solve Eq. (74) starting from t¼δ¼10−8s,
where we have shifted the resonance time to 0 and set
tr ¼ 0. The initial values of h; ϵr, and ϵϕ are from
Eqs. (70b), (71a), (77), (79), and the resonance condition
in Eq. (51). In the absence of analytic estimations for ϵr, we
assume ϵr is 0 in Eq. (77), since it remains small within the
domain we are interested in.
In Fig. 6, we plot orbital separation r (left panels), orbital

frequencyΩ=ð2πÞ (middle panels), and eccentricity e (right
panels) as functions of time, for NS spins 300 Hz (upper
panels) and 550 Hz (lower panels). For the low spin case,
we approximate the adiabatic term in Eq. (75) by both the
leading and subleading terms, while for the high spin case
we only keep the leading term. Predictions of our osculat-
ing equations agree well with the real postresonance orbital
dynamics. This again verifies that our formulas for AðtÞ and
BðtÞ are accurate enough to describe the star’s oscillation
and its backreaction on the orbit. Furthermore, in our
osculating equations we have only included the orbital part
of the radiation-reaction force. The comparison confirms
that the other part, i.e., the stellar radiation-reaction force,
can be safely ignored. One interesting feature of the
postresonance dynamics is the eccentricity of the orbit.
Once the oscillations of NSs are excited, the tidal torque
and the radial tidal force lead to energy and angular
momentum exchanges between the orbit and the star
periodically. As a result, the eccentricity of the orbit
increases and oscillates. Results show that the final eccen-
tricities are nearly 0.08 for both cases.

2. Deficiency of the method of the
effective Love number

According to the definition of the effective Love number
in Eq. (67), we first construct the nontidal binary orbit with
the same initial conditions in Eq. (55)
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ϕðtÞ ¼ 1

32η

1

ð2πMtF0Þ5=3

×
�
1 −

�
1 −

256

5
tMt

2=3μð2πF0Þ8=3
�
5=8

�
; ð91aÞ

rðtÞ ¼
�
rð0Þ4 −

256ηMt
3

5
t

�
1=4

; ð91bÞ

with initial value rð0Þ obtained from Eq. (55). Following the
procedure in Hþ 16 [54,55], we use the PP orbit’s time of

resonance tðPPÞr and the time derivative of angular frequency
as the true tr and _Ωr. Substituting them and the formulas of
A and B into the equation of the effective Love number in
Eq. (67) gives the time evolution of the effective Love
number. In Fig. 7, we plot the results by using both Hþ 16
[54,55] and our new formulas of A and B. The dotted one
represents the resonance time from the full numerical
integrations, and the dash-dotted line is from the PP orbit.
We can see that the true resonance time is earlier than that
of the PP orbit. This is expected because the mode
excitation extracts energy and angular momentum from
the orbit, and accelerates the inspiraling process. The
amplitude of the two models decay at the same rate but
have different phases. Our formulas predict more oscil-
lation cycles.
By feeding keffðtÞ into the orbital dynamics, we obtain

the evolution of orbital separation rðtÞ in Fig. 8. We can see
that neither formula could capture the feature of postreso-
nance dynamics. The similarity between two results show

that it is the formalism of the effective Love number itself
that is inaccurate. Such inaccuracy mainly comes from the
fact that the torque is missing, and the orbit does not shrink
as fast as it should, as we have discussed around Eq. (67).

E. The averaged orbit in the postresonance regime

As discussed in FR07 [53], there are three timescales in
the system’s dynamics, although their values in our case
may not be well separated. The shortest one is an orbital

FIG. 6. The separation r, orbital frequency Ω=ð2πÞ, and the eccentricity e as functions of time. The initial time t ¼ 0 represents the
location of resonance and the end point corresponds to the contact separation. Red lines are from fully numerical solutions and blue lines
are the results of osculating equations (74). The spin of the upper panel is 300 Hz, and the bottom one is 550 Hz. We keep both the
leading and the subleading terms in Eq. (75) in low spin case while keeping only the leading term in high spin case.

FIG. 7. The time evolution of the effective Love number based
on the PP orbit. The red line is from our new formulas of A and B
while the black one is from H þ 16 [54,55]. As represented by
the horizontal dash line, the effective k asymptotically approaches
to k2 ¼ 0.104 in the adiabatic regime. The dotted vertical line
represents the real resonant time and the dash-dotted vertical line
is from the preresonance PP orbit.
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timescale, characterized by the orbital angular frequencyΩ;
the middle one is the tidal timescale, characterized by the
angular frequency ∼ _Θ ¼ 2ΩþΩs − ζ [Eq. (59)]; and the
final one is the gravitational radiation-reaction timescale,
characterized by the frequency _LGW=L. The separation
between tidal and radiation-reaction timescales is shown
more clearly in Fig. 9, where we plot rðtÞ near resonance
with Ωs ¼ 2π × 550 Hz. Let us first focus on the upper
panel, which is from FR07 [53]. The vertical dashed line
indicates the time of resonance, and the horizontal dashed
line represents the actual separation of the system at
resonance. Both quantities are obtained from the numerical
integration. In the radiation-reaction timescale, the system
evolves as PP. The upper blue curve corresponds to the
nontidal quasicircular orbit with the same initial conditions
as our system. It intersects with the vertical and horizontal
dashed lines at “a” and “d.” We can see that there is little
difference between full orbit and the PP orbit in the
adiabatic regime. After resonance, the actual separation
oscillates around another PP orbit in the tidal timescale,
which is determined by Eq. (66) and shown as the lower
blue curve; this curve intersects with the vertical and
horizontal dash lines at “b” and “c.” The pre- and post-
resonance PP orbits are related by an instantaneous time
shift Δt [cf. Eq. (64)] when the preresonance PP orbit
satisfies the resonance condition equation (51), i.e., the
horizontal line between c and d. We should note that the
regimes between “ad” and “cb” are not real evolution stages
that the system undergoes. This is only an effective way to
describe the resonance between two PP orbits. The time of

d, td, is actually tðPPÞr , which we used to construct the
effective Love number in Sec. IV D 2, and it is larger than

the actual resonance time tr because the tide effect accel-
erates the inspiral process and makes resonance earlier. We
can see that FR07 [53] can track the postresonance PP orbit
to a high accuracy.
Here we provide an additional description on the

averaged orbit. As shown in the lower panel of Fig. 9,
instead of evolving the preresonance PP orbit to d and
making a jump in time at a fixed separation, we propose
that the orbit has an immediate jump in angular momentum
(or equivalently, separation) at the fixed time tr, i.e., the

FIG. 9. The orbital separation as a function of time, with NS
spinning at 550 Hz. The vertical dashed lines indicate the time of
resonance, and the horizontal dashed lines represent the actual
separation of the system at resonance. The red curves are from
numerical integrations, while the blue curves are predictions of
PP orbits. The upper blue curves have the same initial conditions
as the system we study. They intersect with the vertical and
horizontal dashed lines at a and d. The lower blue curves are
predictions of FR07 [53] (upper panel) and our new method
(lower panel), which intersect with the vertical and horizontal
dash lines at b and c. To connect the pre- and postresonance PP
orbits, FR07 [53] proposed the time jump Δt from d to c at the
fixed separation, while we use the angular momentum jump (or
equivalently, the separation jump) from a to b at the fixed time tr.

FIG. 8. The orbital dynamics near the resonance, by means of
an effective Love number. The blue line is the result of fully
numerical integration. The red line is from our new formulas of
DT, while the black one is from Hþ 16 [54,55]. As with Fig. 7,
the dotted line and dash-dotted line represent the resonance
condition of numerical and PP evolution, respectively.

SIZHENG MA, HANG YU, and YANBEI CHEN PHYS. REV. D 101, 123020 (2020)

123020-18



vertical line between ab. The jump can be determined as
follows. The orbital angular momentum at a is given by

LðaÞ
PP ¼ μMt

1=2rðaÞ1=2PP ; ð92Þ

while at b the angular momentum is determined by the
angular momentum transfer in Eq. (88),

LðbÞ
PP ¼ LðaÞ

PP − ΔL; ð93Þ

which leads to the orbital separation rðbÞPP

rðbÞPP ¼ rðaÞPP

�
1 −

ΔL
LðaÞ
PP

�
2

: ð94Þ

Evolving the PP orbit with the above initial condition gives
the lower panel of Fig. 9. This method is very similar to
FR07 [53]. However, it also has a disadvantage: since so far
we do not have an independent analytic estimation on the

time of resonance, we cannot know the value of rðaÞPP without
solving the full equations. Nevertheless, this method
provides us with an alternative understanding on the
postresonance PP orbit; i.e., it is related to the preresonance
PP orbit by an instantaneous jump in an angular momen-
tum, by contrast to a time shift Δt at a fixed separation. In
fact, one can prove that two methods agree with each other
to the leading order in Δt. By expanding Eq. (94), we find
the jump between a and b to be

rðaÞPP − rðbÞPP ¼ 2ΔL

LðaÞ
PP

rðaÞPP ¼ _rðaÞPPΔt; ð95Þ

where the last equality comes from the fact that L ∝ r1=2

and the relation between ΔL and Δt in Eq. (64). The result
is exactly the jump predicted by Eq. (66) if one expands
rðtr þ ΔtÞ − rðtrÞ to the leading order inΔt. In fact, we can
work conversely. By imposing that the two methods predict
the same orbital separation for the postresonance PP orbit at
resonance, we get an analytic equation for tr

rðbÞPP ¼ rðtr þ ΔtÞ ¼ rðtrÞ
�
1 −

ΔL
Lr

�
2

; ð96Þ

where

Lr ¼ μMt
1=2rðtrÞ1=2; ð97Þ

and rðtÞ is shown in Eq. (91b). Equation (96) is an algebraic
equation for tr. In Table III, we show the accuracies of
results by calculating the ratio between Δt and jtd − trj,
where Δt is the difference between tr obtained from
Eq. (96) and the true tr, and jtd − trj is the time difference
between a and d in Fig. 9. The ratios are between 5%
and 20%.

From the above discussion, we can see the method of
averaged orbit is qualitatively accurate. By connecting
two PP orbits with a jump, one can already extract some
information of the system (e.g., tr) without solving fully
coupled differential equations.However, thismethod has two
disadvantages. The first one is that it ignores the oscillation
on the top of the averaged orbit in the postresonance regime,
which carries the information of the f-mode. Second,
averaging is only valid when the spin is large. As shown
in Fig. 6, since the system does not undergo a full tidal
oscillation cycle when spin is 300 Hz or below, it is not
appropriate to discuss the averaged orbit in this case.

V. GRAVITATIONAL WAVEFORMS AND
EXTRACTION OF PARAMETERS

In the last two sections, we mainly discussed near-zone
dynamics. We obtained new formulas (60) for the tidal
deformation amplitudes A and B, obtained osculating
equations (74) for the orbit, and developed analytic treat-
ments that coupled stellar and orbital motions and carried
out comparisons between analytic and numerical results.
In this section, we will go to the far zone to study GWs.

We first quantify the accuracy of the method of the effective
Love number and the method of averaged PP orbit in the
framework of the match filtering. We then compute the
SNR of GWs emitted during and after resonance. Results
show that postresonance GWs may be strong enough to be
observed by future GW detectors. We finally show that DT
can provide more precise estimations on the parameters of
NSs. Wewant to emphasize again that the major goal of this
section is to provide a qualitative feature of impact of DTon
GW observations. As we have discussed above, the EOS
we used, as well as high spin rate, might be unlikely in
realistic scenarios.

A. Accuracies of DT models

To the lowest order, GWs emitted by a system are related
to the near-zone dynamics through [90]

hTTij ¼ 2

DL
Q̈TT

ij ; ð98Þ

where DL is the distance between the detector and the
source, which we choose as 100 Mpc. Qij is the quarupole
moment of the system. The superscript “TT” stands for the
transverse-traceless components of the tensor. Amplitudes
of the two polarizations of the GW are given by [90]

TABLE III. The comparisons between our analytic estimates
for tr in Eq. (96) and full numerical integrations. For reference,
the errors of results are compared with jtd − trj, i.e., the time
difference between d and a in Fig. 9.

Ωs=ð2πÞ (Hz) 550 450 350 250 150
jΔtrj
jtr−taj (×10

−2) 20.3 5.3 5.4 13.6 20
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hþ ¼ −
1

4
s2i ðQxx þQyyÞ þ

1

4
ð1þ c2i Þc2βðQxx −QyyÞ

þ 1

2
ð1þ c2i Þs2βQxy − sicicβQxz − sicisβQyz

þ 1

2
s2i Qzz; ð99aÞ

h× ¼ −
1

2
cis2βðQxx −QyyÞ þ cic2βQxy

þ sisβQxz − sicβQyz; ð99bÞ

where ci ¼ cos ι, si ¼ sin ι, c2β ¼ cos 2β, and s2β ¼ sin 2β.
The angle ι is the inclination of the orbital plane with
respect to the line of sight toward the detector, and β is
azimuthal angle of the line of nodes. The detector measures
the linear combination of the two polarizations

hðtÞ ¼ Fþhþ þ F×h×; ð100Þ

where the detector antenna pattern functions Fþ and F× are
given by

Fþ ¼ 1

2
ð1þ cos2 θÞ cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ;

ð101aÞ

F× ¼ 1

2
ð1þ cos2 θÞ cos 2ϕ sin 2ψ þ cos θ sin 2ϕ cos 2ψ ;

ð101bÞ

with θ and ϕ the angular location of the source relative to
the detector, ψ the polarization angle [90].
In order to measure the similarity between two wave-

forms h and g, we define their match [92]

O½h; g� ¼ max
tc;ϕc

ðhjgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhjhÞðgjgÞp ; ð102Þ

and mismatch 1 −O. The inner product ðhjgÞ between two
waveforms is defined as

ðhjgÞ ¼ 4Re
Z

h̃�ðfÞg̃ðfÞ
SnðfÞ

df; ð103Þ

with the superscript � standing for complex conjugation,
and SnðfÞ standing for the noise spectral density of the
detector. In Fig. 10, we plot the noise spectral densities of

FIG. 10. The noise spectral densities of several ground-based
detectors.

FIG. 11. The mismatches as functions of spin frequency. We
only use the signals with frequency higher than 2Ωr=ð2πÞ
because we only focus on the postresonance dynamics. The
fully numerical integrations are compared with four models, the
effective Love number with H þ 16 [54,55] (blue dashed line),
effective Love number with our new DT formulas (red line), our
new averaged PP orbit (green line), and osculating equations
(black line). The mismatches of osculating equations are lower
than 10−3, while the method of the effective Love number gives
∼0.1–0.2 for spin higher than 370 Hz. This approach is
insensitive to which DT model we use. Our new averaged PP
orbit, on the other hand, is in the middle of two other approaches.
The worst mismatch is around 3 × 10−2.

FIG. 12. The SNRs from the resonant part of GW signals, with
frequency higher than 2Ωr=ð2πÞ. The faster the NS spins, the
higher the SNR. The SNR is around 0.3–3 for current detectors,
but ∼10–50 for 3G detectors.
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aLIGO [93,94], aVirgo [94,95], KAGRA [94,96], Voyager
[97], CE [98], and ET [99].
The fully numerical simulated waveforms can be com-

puted in the following way. We first numerically solve the
equations of motion equations (32), which gives the total
quadrupole moment of the system QTotal

ij ¼ Qij þ μxixj −
μr2δij=3 by Eq. (29). We then obtain the waveform hðtÞ
from Eq. (98). In this paper, we choose ι ¼ β ¼ θ ¼ ϕ ¼
ψ ¼ 0 for simplicity. We then sample the solutions in the
time domain with the rate 1=8192 s, and use the fast
Fourier transform algorithm to perform the discrete Fourier
transform on the sampled data. Following the procedure of
Ref. [100], we zero-pad the strain data on both sides to
satisfy the periodic boundary condition before fast Fourier
transform. Our choice of sample rate already ensures
that the Nyquist frequency is larger than the contact

frequency. We define the frequency-domain waveform
within the frequency band ½2F0; 2Fcontact� as the full signal
and ½2Ωr=ð2πÞ; 2Fcontact� as postresonance signal. Here
Fcontact is the orbital contact frequency and the factor of
2 comes from the correspondence between the orbital
frequency and GW frequency at quadrupole order.
In Fig. 11, we plot the mismatch between postresonance

waveforms obtained from different DT models, as func-
tions of spin frequency. One waveform is calculated from
the fully numerical integration; against this target wave-
form, we compare waveforms obtained from four different
models: the effective Love number with H þ 16 [54,55]
(blue dashed line), effective Love number with our new
formulas (60) (red line), our new postresonance averaged
PP orbit defined in Eq. (94) (green line), and osculating
equations (black line). Here we do not include the averaged
orbit model in FR07 [53] because it is very close to our
model. Since the match depends weakly on detector noise
curve, we shall use that of aLIGO. One can see that the
mismatches of all models are smaller that 10−3 for spins
below 370 Hz, since in this case the postresonance signals
are very short, such that the phase mismatches do not
accumulate with frequency. The mean mismatches of our
osculating equations are around 10−4, with the worst one

TABLE IV. The SNRs of full GW signals within the band
½2F0; 2Fcontact� for different detectors. The spin frequency of NS
is 300 Hz.

aLIGO aVIRGO KAGRA Voyager ET-D CE

31.6 25.4 31.4 135.1 305.7 884.0

FIG. 13. Relative errors of λ̃3, λ̃4, ω2, and Ωs as functions of spin from Fisher analyses. The GW waveform is at the Newtonian order.
The vertical dotted line stands for the location where resonance happens. The system is optimally oriented at 100 Mpc, with component
masses ð1.4 M⊙; 1.4 M⊙Þ. The H4 EOS is used.
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still below 10−3. Accordingly, this approach describes the
postresonance dynamics accurately. This confirms that our
new formulas of A and B are precise enough for describing
the tidal backreaction on the orbit. Methods that use the
effective Love number, on the other hand, give the large
mismatch of around 0.2 when the spin frequency reaches
∼450 Hz. The fact that both versions lead to similar
mismatches, even with our accurate formulas for A and
B, shows that the formalism itself is imprecise. The
mismatch of our averaged PP-orbit treatment is less than
0.03 within the entire regime we study. Therefore this
approach gives a fairly accurate description of postreso-
nance GW signals.

B. Detectability and Fisher analyses

In Fig. 12, we plot the signal-to-noise ratios (SNRs) of
postresonance GW (within the band ½2Ωr=ð2πÞ; 2Fcontact�)
as functions of spin frequency Ωs. As expected, it grows
with spin frequency. For aLIGO, Ωs needs to be above
∼425 Hz to lead to SNR > 1. For 3G detectors, SNRs are
around 4 for spin ∼300 Hz. It can reach 50 if the spin is
around 500 Hz. For comparison, we also calculate the
SNRs of full signals within the band ½2F0; 2Fcontact� in
Table IV. Since the full SNRs depend weakly on the spin
frequency, here we choose Ωs ¼ 2π × 300 Hz.

These results of SNRs show the potential to detect
postresonance signals with 3G detectors. This allows us
to extract more information from GW signals than AT. As
pointed out in Ref. [23], the Love number of nonspinning
NS is degenerate with mass ratio Ξ ¼ M2=Mt at leading
order in the adiabatic regime. Only the effective λ̃ ¼
λΞð11Ξþ 1Þ can be constrained by GWs.8 This degeneracy
persists for spinning NSs in AT. In this case, the phase of
GW during AT (up to leading tidal order of the Love
number) is given by

Ψ ¼ 2πftc − ϕc −
π

4
þ 3

128
ðπMfÞ−5=3

�
1 −

24ðπfÞ10=3
M5=3

×

�
11

4
Ξ2λ0 þ

λ2Ξ
1 − 2Ω2

s=ω2
2

�
1þ 33

4
Ξ
���

: ð104Þ

Hence the tidal term is governed by the effective Love
number

λ̃3 ¼
11

4
Ξ2λ0 þ

λ2Ξ
1 − 2Ω2

s=ω2
2

�
1þ 33

4
Ξ
�
: ð105Þ

FIG. 14. Same as Fig. 13, except the polytropic EOS is used.

8We still assume only M1 is tidally deformed.
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It is straightforward to see that λ̃3 reduces to λ̃ in the
nonspinning limit. Note that our notation of λ̃3 differs from
Ref. [23] by a factor of η ¼ μ=Mt, since they used total
mass Mt while we use the chirp mass M here. As Ω
increases, the motion of (2,2) mode is resonantly getting
excited while (2,0) mode is not, their different reactions to
the tidal driving from the orbit lead to distinct effects on
GW emission, therefore the degeneracy is broken. To
describe this effect, we introduce another parameter

λ̃4 ¼
λ2Ξ

1 − 2Ω2
s=ω2

2

�
1þ 33

4
Ξ
�
; ð106Þ

i.e., the second part of Eq. (105). Accordingly, the nume-
rical waveforms are determined by a nine-dimensional
parameter θ ¼ ftc;ϕc; DL;M;Ξ;Ωs;ω2; λ̃3; λ̃4g. Here we
ignore ω0, the mode frequency of (2,0) mode, since this
mode does not have DT and its mode frequency is almost
degenerate with other parameters.
Let us now turn to parameter estimation, using the Fisher

information matrix formalism. Suppose random noise nðtÞ
in observed signal sðtÞ is stationary and Gaussian, the
conditional likelihood function of s given parameters θ can
be written as

pðsjθÞ ∝ e−ðs−hjs−hÞ=2; ð107Þ
where hðθ; tÞ stands for the true waveform for parameter θ.
In the large-SNR approximation, the likelihood function
becomes Gaussian,

pðsjθÞ ∝ e−ΓijΔθiΔθj=2; ð108Þ
where Fisher matrix Γij is given by

Γij ¼
�∂h
∂θi

				 ∂h∂θj
�
: ð109Þ

Since waveforms are numerically calculated in our case
(from algorithms discussed in the previous subsection),
derivatives are computed numerically using the symmetric
difference quotient method. The inverse of the Fisher
matrix gives the covariance matrix. In particular, the
diagonal components are the variances of the estimated
parameters

Δθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; ð110Þ

which are the projected constraints that we can put on
parameters from the observation.
We still use the H4 and the Γ ¼ 2 polytropic EOSs, with

M1 ¼ M2 ¼ 1.4 M⊙. The system is at DL ¼ 100 Mpc and
optimally oriented. Projected constraints on several param-
eters as functions of spin frequency are shown in Figs. 13
and 14, where the vertical lines stand for values of spins for

which resonance takes place right on contact. We can see
that the two EOSs give similar results. The constraints
change with detectors since we have fixed the distance of
the source, and 3G detectors can benefit from large SNRs.
Among the six detectors, CE provides the best parameter
estimations because it is the most sensitive in the high
frequency band, where DT takes place. To quantify the
effect of DT, we list the projected constraints on several
parameters in Table V under two situations: (i) results
evaluated with spin frequencies when resonance takes place
right on contact and (ii) constraints with spin frequencies
500 Hz. The improvement factor, which is the ratio of
estimation accuracies between two situations, characterizes
the effect of DT.
Let us discuss each parameter more specifically. First, we

can see that for different detectors the relative errors on λ̃3
are of order ∼0.4–20, which depend most weakly on spins
when compared to other parameters. The estimation error
even becomes worse when spins are high. This is because
this parameter is mainly estimated from AT, and the
constraints do not benefit from DT. When spins are high,

TABLE V. Projected constraints on λ̃3, λ̃4, ω2, and Ωs with two
EOSs for six different detectors. Here we compare two situations:
(i) constraints with spins when resonance takes place right
on contact (Res) and (ii) constraints with NSs spinning at
500 Hz (Ωm

s ). The improvement factor is the ratio of Ωm
s to

Res, which characterizes the effect of DT.

Detectors aVirgo KAGRA aLIGO Voyager ET-D CE

H4

Δλ̃3
λ̃3

Res 18.4 13.4 5.7 2.1 0.6 0.4
Ωm

s 22.4 21.0 14.1 4.3 1.5 0.8
Imp 0.8 0.6 0.4 0.5 0.4 0.5

Δλ̃4
λ̃4

Res 81.8 72.4 41.6 13.5 4.3 2.5
Ωm

s 23.0 21.1 14.1 4.3 1.4 0.8
Imp 3.6 3.4 3.9 3.1 3.0 3.2

Δω2

ω2

Res 43.2 41.2 27.0 8.2 2.8 1.4
Ωm

s 8.6 7.8 5.1 1.6 0.5 0.4
Imp 5.0 5.3 5.2 5.2 5.2 4.0

ΔΩs
Ωs

Res 575.7 542.9 346.6 106.4 35.6 19.4
Ωm

s 29.9 27.1 17.7 5.4 1.8 1.0
Imp 19.3 20.1 19.6 19.6 19.5 19.9

Poly

Δλ̃3
λ̃3

Res 17.9 14.0 6.3 2.3 0.7 0.4
Ωm

s 18.1 17.2 11.4 3.5 1.2 0.6
Imp 1.0 0.8 0.6 0.7 0.6 0.6

Δλ̃4
λ̃4

Res 95.8 81.6 46.8 15.1 4.9 2.8
Ωm

s 19.5 18.1 11.6 3.6 1.2 0.7
Imp 4.9 4.5 4.0 4.2 4.1 4.2

Δω2

ω2

Res 39.7 36.5 24.8 7.3 2.5 1.3
Ωm

s 6.0 5.6 3.6 1.1 0.4 0.2
Imp 6.6 6.6 6.9 6.6 6.9 6.6

ΔΩs
Ωs

Res 533.4 496.0 332.5 99.2 33.9 18.1
Ωm

s 20.2 18.7 12.0 3.7 1.2 0.7
Imp 26.4 26.5 27.8 26.7 27.6 26.5

EXCITATION OF F-MODES DURING MERGERS OF … PHYS. REV. D 101, 123020 (2020)

123020-23



adiabatic waveforms become relatively short; hence, the
project constraints become worse. By contrast, estimation
error of the other Love number λ̃4, which describes the (2,2)
mode, improves with spin. This is expected since DT
introduces the dependence of waveforms on λ̃4. The
constraints on this quantity can be improved by a factor
of 3–5, depending on the EOS and detectors. In the CE
case, the relative error of λ̃4 can finally decrease to ∼0.8 as
spins are around 500 Hz. However, this parameter is still
degenerate with the mass ratio Ξ. One needs to take into
account PN corrections to break such degeneracy.
DT also helps us put more stringent constraints on the

(2,2) mode frequency, since the oscillations of NSs can
react back to orbits and influence GW waveforms. As
shown in Table V, the averaged improvement factors are
around 6.6–6.9 for the polytropic EOS, while ∼5 for the
H4 EOS. The current detector, like aLIGO, cannot constrain
this parameter well, giving relative errors ∼5. However,
it is improved to 0.2 in the CE case. We have also calculated
the effect of DT on constraining spin frequencies. The
improvements on spin are the largest among parameters we
discuss, since this parameter determines the location of
resonance in the time (frequency) domain. The improve-
ments are around 20–27 for both EOSs. In the CE case, the
relative errors are ∼0.7–1 when spins reach 500 Hz.

VI. CONCLUSIONS AND DISCUSSION

We have systematically studied the (2,2) f-mode DT of
spinning NSs in coalescencing binaries. In particular, the
spin is assumed to be antialigned with the orbital angular
momentum, in which case the effect of DT is the most
pronounced. We began by deriving a complete set of
coupled equations for mode oscillation and orbital evolu-
tion, with the aid of the phase-space mode expansion
method and the Hamiltonian approach. We then extended
Hþ 16’s model [54,55] for f-mode excitation to spinning
NSs and obtained a new approximation which can describe
the full dynamics of systems to a high accuracy. One
application of this approximation is to study the postreso-
nance orbital dynamics, where we used the method of
osculating orbits and obtained the time evolution of the
osculating variables. This framework allowed us to obtain
analytic estimations on the orbital information at resonance
(e.g., _rr, _Ωr). We also obtained a simple formula of angular
momentum transfer due to DT, which is an extension of
L94 [36] to the spinning case. Based on this result, we
derived the averaged postresonance orbits over the tide-
oscillation timescale in an alternative way. The result of our
averaged treatment turns out to agree with that of FR07
[53], to the leading order in angular momentum transfer
time Δt [Eq. (64)]. By combining the two treatments, we
obtained an algebraic equation for tr. We then compared
several DT models by computing the mismatches of
waveforms. Finally, we carried out a Fisher matrix analysis

to estimate the effect of DT on parameter estimation, with
current and 3G detectors.
We summarize our main conclusions as follows. (i) The

(2,2) f-mode in the spinning NS, by defining a new variable
x [Eq. (49)], can still be treated as a harmonic oscillator,
which is oscillating at its eigenfrequency ζ in the post-
resonance regime. (ii) The reason that H þ 16 [54,55]
cannot describe the postresonance evolution is twofold.
First, their phasing t̂2 is not accurate and should be replaced
by Θ [Eq. (59)]. Second, their counterterm equation (48)
does not contain phase information. (iii) The picture of the
averaged orbit over the tide-oscillation timescale is accurate:
the true pre- and postresonance orbitalmotion can be tracked
accurately by PP orbits. These PP orbits are related by
energy and angular momentum transfers, and hence a jump
in the orbital separation at tr. Within the spin range we
studied, the match of GW signals between the prediction
using the averaged orbit and numerical integration (post-
resonance part) is as high as 99%. Therefore, the additional
tidal perturbation is a small effect. However, such a
description requires that the postresonant signal is long
enough (i.e., large spin) so that the system can undergo
several tidal oscillation cycles. Looking at the full orbit, we
found that there is an extra oscillation on top of the averaged
trajectory. We also found that the eccentricity of the orbit is
induced by the tidal interaction and can grow to∼0.08 at the
end of inspiral, the numbers depend weakly on the spin.
(iv) Themethod of the effective Love number is not accurate
to describe the f-mode when spin is large and when DT is
significant: this method essentially ignores the torque
between the orbit and the star. The mismatch of GW signals
between this formalism and numerical integrations increases
to 0.2 when the spin frequency is larger than 450 Hz, even
when accurate models for tidal amplitudesA andB are used;
therefore, it is the method itself that is inaccurate. (v) We
found that DT leads to little improvement on estimating λ̃3 in
Eq. (105), for which constrains are mainly from AT. In our
study, they even become worse since the adiabatic part is
relatively short when the spin is large. For a system with
component masses ð1.4; 1.4Þ M⊙ at 100 Mpc, the relative
errors of λ̃3 are around5 for aLIGOand 0.4 for CE.However,
DT does break the degeneracy between λ̃3 and λ̃4, because
the oscillations of (2,2)mode are excitedwhile those of (2,0)
mode are not; hence, they contribute differently toGWs. The
constraints on λ̃4 can be improved by factor of 3 ∼ 4. In the
CE case, the relative errors are 0.7 ∼ 0.8 when the spin
frequency is 500 Hz. We also calculated the constraints on
the mode frequency ω2 and the spin Ωs. We found that they
improve by factors of 5 ∼ 6 and 19 ∼ 27, respectively. In the
CE case, the relative errors of themode frequency are around
0.2 ∼ 0.4 while for spin, the numbers are 0.7 ∼ 1.0. Hence,
DT potentially provides an alternative channel for people to
study the physics of NSs.
Throughout the paper, we have assumed that the NS is in

the normal-fluid state, whereas in reality the core of a cold
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NS is expected to be in the superfluid state [101]. Thus, a
two-fluid formalism should be used to capture the new
degree of freedom associated with the superfluidity [102],
and the f-mode, in particular, should split into a doublet
[103]. However, as shown in Ref. [103], the new f-mode
due to the superfluid degree of freedom typically has a
much higher frequency than the ordinary one (i.e., the f-
mode we considered here) and consequently we do not
expect it to significantly change the results we have here.
In addition to the ignorance of the superfluidity, there are

three caveats we would like to note. First, the H4 EOS has
been shown to be less likely based on the observation of
GW170817 [7]. Second, the spin modifications to mode
frequencies through the Maclaurin spheroid is merely a toy
model and might be too simple for the real situation.
Finally, the NS spin frequency should be high enough
ð∼500 Hz) for DT to have significant effects. Such a high
frequency is unlikely in astrophysical binaries. However,
we here mainly aim to use semianalytic methods to provide
qualitative understandings on DT, different EOSs will give
similar results. This is because the equations of motion in
Eq. (32) are generic. The EOS only affects the values of λ0;2
and ω0;2;3. On the other hand, our derivations of tidal
excitations A and B [Eq. (60)] are valid for any systems
which couple a harmonic oscillator to a Kepler orbit with a
dissipative force in the long timescale. The framework
presented in the paper is generic and can be applied to other
types of DTs. One possible avenue for future work is to use
our discussions to study excitations of r-modes with more
realistic EOSs, since they only require NS to spin at tens of
Hz, and are more likely to take place in BNS systems.
All of the calculations in this paper are at the Newtonian

order, which has allowed us to reveal the insufficiency of the
effective Love number approach, and the possibility of
gaining further information on neutron stars—in the regime
where theNShas substantial spin, antialignedwith theorbital
angular momentum. This information must still be comple-
mented by contributions from PN corrections. For instance,
at the Newtonian order ζ and Ωs are partially degenerate
since they mainly enter equations through the combination
ζ–Ωs. By introducing the PN effect, like spin-orbit and spin-
spin couplings, spin will be more constrained, which could
break the degeneracy, and consequently, put more stringent
constraints on mode frequencies. This is also true for the
degeneracy between the mass ratio and Love number. In our
case, the mass ratio is still badly constrained and degenerate
with the Love number. By including 1PN effect, we could get
more accurate estimations on these quantities.
Second, the universal relation for NS is also an important

fact to break degeneracy. For example, the universality
between the Love number and f-mode frequencies was
observed in Ref. [58]. With such additional information,
constraints on parameters should be improved.
Finally, it is interesting to compare our analytic analyses

with recent numerical simulations in Ref. [57]. To do so,

one needs to append the tidal Hamiltonian Eq. (24) to the
EOB Hamiltonian, and jointly evolve the orbital motion
and the stellar oscillation, to obtain faithful predictions of
waveforms.
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APPENDIX: THE DERIVATION OF MODE
OSCILLATION FORMULAS

In this section, we will give a detailed derivation for our
new DT formulas of A and B, following Ref. [104]
As we have shown in Eq. (49), the stellar oscillation

during DT can be described by a harmonic oscillator
after a transformation. Its general solution is the sum of
a homogeneous solution and the particular solution. Here
we assume that there are no free oscillations in the NS
initially; hence, the solution can be expressed in terms of
the retarded Green function and tidal driving

xðtÞ ¼ 1

ζ

Z
t 3M2λ2ω

2
2

2r03
eiΩst0þ2iϕðt0Þ sin ζðt − t0Þdt0: ðA1Þ

By integration by part, we get

xðtÞ ¼ 3M2λ2ω
2
2

2ζ

�
ζeiΩstþ2iϕ

ζ2 − ðΩs þ 2ΩÞ2
1

r3

þ e−iζt
Z

t _Ω0eiΩst0þ2iϕðt0Þþiζt0

ðΩs þ 2Ω0 þ ζÞ2r03 dt
0

− eiζt
Z

t _Ω0eiΩst0þ2iϕðt0Þ−iζt0

ðΩs þ 2Ω0 − ζÞ2r03 dt
0
�
; ðA2Þ

where we have ignored _r. However, the method fails once
the resonance happens. There is a stationary point within
the integration domain. L94 [36] and Hþ 16 [54,55]
expanded ϕðt0Þ in Eq. (A1) around tr and estimated the
integral with SPA. Our treatment is slightly different. In
order to incorporate both the adiabatic and resonant
regimes, we start from Eq. (A2) instead of (A1), where
the adiabatic term is separated out initially. At resonance,
this adiabatic term goes to infinity. Hence, there should be a
counterterm arising from the integration, to cancel out such
infinity. Hþ 16 [54,55] chose Eq. (48) as the counterterm.
Here we derive a better counterterm by studying the
integration in Eq. (A2).
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Since there is no stationary point in the second term on
the rhs of Eq. (A2), it can be ignored. Expanding the
integrand of the third term around the resonance point, and
neglecting the time derivatives of _Ω and r, the integration
becomes

Z
t eiχrþi _Ωrðt0−trÞ2

4r3r _Ωrðt0 − trÞ2
dt0

¼ −
eiχrþit̂2

4r3r

ffiffiffiffiffiffi
_Ωr

q 1

t̂
þ eiχr

2r3r

ffiffiffiffiffiffiffiffi
π

2 _Ωr

r

×

�
−FS

� ffiffiffi
2

π

r
t̂

�
þ iFC

� ffiffiffi
2

π

r
t̂

�
−

1ffiffiffi
2

p e−iπ=4
�
: ðA3Þ

The terms in the bracket are same as Hþ 16 [54,55].
However, we have a new counterterm

−
eiχrþit̂2

4r3r

ffiffiffiffiffiffi
_Ωr

q 1

t̂
; ðA4Þ

which contains the phase χr þ t̂2. As we have discussed in
Sec. III B, the real part of this term gives rise to a
contribution to A that is proportional to cosðt̂2 − ΘÞ=t̂2,
which reduces to Hþ 16’s [54,55] if we neglect

cosðt̂2 − ΘÞ. This term cancels the infinity caused by the
adiabatic term. On the other hand, the imaginary part of
Eq. (A4) does not diverge, since

lim
t→tr

sinðt̂2 − ΘÞ
t̂

¼ 0: ðA5Þ

Performing the integration by part again on the third term
of Eq. (A2), we get the next order correction

Z
t _Ω0eiΩst0þ2iϕðt0Þ−iζt0

ðΩsþ2Ω0−ζÞ2r03dt
0

¼
_ΩeiΩstþ2iϕ−iζt

iðΩsþ2Ω−ζÞ3r3þ
Z

t6 _Ω02eiΩst0þ2iϕðt0Þ−iζt0

iðΩsþ2Ω0−ζÞ4r03 dt
0: ðA6Þ

Following the same procedure, we obtain a higher order
corrections as

ΔAðtÞ ¼ M2λ2
ζ

3ω2
2

16r3r _Ω1=2
r

sinðt̂2 − ΘÞ
t̂3

: ðA7Þ

The correction term contributes a finite value as t → tr. As
shown in Table I, this term reduces the error of Ar from tens
of percents to ≲4% in the situations we consider.
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