358 research outputs found

    Synthesis and inclusion behavior of a heterotritopic receptor based on hexahomotrioxacalix[3]arene

    Get PDF
    A heterotritopic hexahomotrioxacalix[3]arene receptor with the capability of binding two alkali metals and a transition metal in a cooperative fashion was synthesized. The binding model was investigated by using ¹H NMR titration experiments in CDCl₃–CD₃CN (10:1, v/v), and the results revealed that the transition metal was bound at the upper rim and the alkali metals at the lower and upper rims. Interestingly, the alkali metal ions Li⁺ and Na⁺ bind at the lower and upper rim respectively depending on the dimensions of the alkali metal ions versus the size of the cavities formed by the calix[3]arene derivative. The hexahomotrioxacalix[3]arene receptor acts as a heterotritopic receptor, binding with the transition metal ion Ag⁺ and the alkali metals ions Li⁺ and Na⁺. These findings were not applicable to other different sized alkali metals, such as K⁺ and Cs⁺

    2-(3-Oxo-2,3-dihydro-1,2-benzothia­zol-2-yl)acetic acid

    Get PDF
    In the title compound, C9H7NO3S, the benzoisothia­zolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. In addition, weak inter­molecular C—H⋯O hydrogen bonds are present

    Optimal cutoff scores of the Chinese version of 15-item negative symptom assessment that indicate prominent negative symptoms of schizophrenia

    Get PDF
    ObjectiveThe Chinese version of 15-item negative symptom assessment (NSA-15) is an instrument with a three-factor structure specifically validated for assessing negative symptoms of schizophrenia. To provide a reference for future practical applications in the recognition of schizophrenia patients with negative symptoms, this study aimed to determine an appropriate NSA-15 cutoff score regarding negative symptoms to identify prominent negative symptoms (PNS).MethodsA total of 199 participants with schizophrenia were recruited and divided into the PNS group (n = 79) and non-PNS group (n = 120) according to scale for assessment of negative symptoms (SANS) scores. Receiver-operating characteristic (ROC) curve analysis was used to determine the optimal NSA-15 cutoff score for identifying PNS.ResultsThe optimal cutoff NSA-15 score for identifying PNS was 40. Communication, emotion and motivation factors in the NSA-15 had cutoffs of 13, 6, and 16, respectively. The communication factor score had slightly better discrimination than scores on the other two factors. The discriminant ability of the global rating of the NSA-15 was not as good as that of the NSA-15 total score (area under the curve (AUC): 0.873 vs. 0.944).ConclusionThe optimal NSA-15 cutoff scores for identifying PNS in schizophrenia were determined in this study. The NSA-15 provides a convenient and easy-to-use assessment for identifying patients with PNS in Chinese clinical situations. The communication factor of the NSA-15 also has excellent discrimination

    Ethyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate

    Get PDF
    The title compound, C10H9NO3S, was synthesized by the reaction of benzo[d]isothia­zol-3(2H)-one with ethyl carbonochloridate in toluol. The benzisothia­zolone ring system is approximately planar, with a maximum deviation from the mean plane of 0.020 (1) Å for the N atom

    Impact of biogenic SOA loading on the molecular composition of wintertime PM2.5 in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Biomass burning is one of the key sources of urban aerosols in the North China Plain, especially in winter when the impact of secondary organic aerosols (SOA) formed from biogenic volatile organic compounds (BVOCs) is generally considered to be minor. However, little is known about the influence of biogenic SOA loading on the molecular composition of wintertime organic aerosols. Here, we investigated the water-soluble organic compounds in fine particles (PM2.5) from urban Tianjin by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Our results show that most of the CHO and CHON compounds were derived from biomass burning; they contain O-poor and highly unsaturated compounds with aromatic rings, which are sensitive to photochemical reactions, and some of which probably contribute to light-absorbing chromophores. Under moderate to high SOA loading conditions, the nocturnal chemistry is more efficient than photooxidation to generate secondary CHO and CHON compounds with high oxygen content. Under low SOA-loading, secondary CHO and CHON compounds with low oxygen content are mainly formed by photochemistry. Secondary CHO compounds are mainly derived from oxidation of monoterpenes. But nocturnal chemistry may be more productive to sesquiterpene-derived CHON compounds. In contrast, the number- and intensity-weight of S-containing groups (CHOS and CHONS) increased significantly with the increase of biogenic SOA-loading, which agrees with the fact that a majority of the S-containing groups are identified as organosulfates and nitrooxy-organosulfates that are derived from the oxidation of BVOCs. Terpenes may be potential major contributors to the chemical diversity of organosulfates and nitrooxy-organosulfates under photo-oxidation. While the nocturnal chemistry is more beneficial to the formation of organosulfates and nitrooxy-organosulfates under low SOA-loading. The SOA-loading is an important factor associating with the oxidation degree, nitrate group content and chemodiversity of nitrooxy-organosulfates. Furthermore, our study suggests that the hydrolysis of nitrooxy-organosulfates is a possible pathway for the formation of organosulfates.</p

    Rankitect: Ranking Architecture Search Battling World-class Engineers at Meta Scale

    Full text link
    Neural Architecture Search (NAS) has demonstrated its efficacy in computer vision and potential for ranking systems. However, prior work focused on academic problems, which are evaluated at small scale under well-controlled fixed baselines. In industry system, such as ranking system in Meta, it is unclear whether NAS algorithms from the literature can outperform production baselines because of: (1) scale - Meta ranking systems serve billions of users, (2) strong baselines - the baselines are production models optimized by hundreds to thousands of world-class engineers for years since the rise of deep learning, (3) dynamic baselines - engineers may have established new and stronger baselines during NAS search, and (4) efficiency - the search pipeline must yield results quickly in alignment with the productionization life cycle. In this paper, we present Rankitect, a NAS software framework for ranking systems at Meta. Rankitect seeks to build brand new architectures by composing low level building blocks from scratch. Rankitect implements and improves state-of-the-art (SOTA) NAS methods for comprehensive and fair comparison under the same search space, including sampling-based NAS, one-shot NAS, and Differentiable NAS (DNAS). We evaluate Rankitect by comparing to multiple production ranking models at Meta. We find that Rankitect can discover new models from scratch achieving competitive tradeoff between Normalized Entropy loss and FLOPs. When utilizing search space designed by engineers, Rankitect can generate better models than engineers, achieving positive offline evaluation and online A/B test at Meta scale.Comment: Wei Wen and Kuang-Hung Liu contribute equall
    corecore