191 research outputs found

    Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli

    Get PDF
    Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, and yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 Escherichia coli bloodstream infection isolates from Oxfordshire, United Kingdom, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). A total of 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity, 23% [78/339]) but improved when genetic features associated with penicillinase hyperproduction (e.g., promoter mutations and copy number estimates) were considered (sensitivity, 82% [277/339]; P < 0.0001). Most discrepancies occurred in isolates with MICs within Β±1 doubling dilution of the breakpoint. We investigated two potential causes: the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (Β±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions

    Phylogeography of Recently Emerged DENV-2 in Southern Viet Nam

    Get PDF
    Revealing the dispersal of dengue viruses (DENV) in time and space is central to understanding their epidemiology. However, the processes that shape DENV transmission patterns at the scale of local populations are not well understood, particularly the impact of such factors as human population movement and urbanization. Herein, we investigated trends in the spatial dynamics of DENV-2 transmission in the highly endemic setting of southern Viet Nam. Through a phylogeographic analysis of 168 full-length DENV-2 genome sequences obtained from hospitalized dengue cases from 10 provinces in southern Viet Nam, we reveal substantial genetic diversity in both urban and rural areas, with multiple lineages identified in individual provinces within a single season, and indicative of frequent viral migration among communities. Focusing on the recently introduced Asian I genotype, we observed particularly high rates of viral exchange between adjacent geographic areas, and between Ho Chi Minh City, the primary urban center of this region, and populations across southern Viet Nam. Within Ho Chi Minh City, patterns of DENV movement appear consistent with a gravity model of virus dispersal, with viruses traveling across a gradient of population density. Overall, our analysis suggests that Ho Chi Minh City may act as a source population for the dispersal of DENV across southern Viet Nam, and provides further evidence that urban areas of Southeast Asia play a primary role in DENV transmission. However, these data also indicate that more rural areas are also capable of maintaining virus populations and hence fueling DENV evolution over multiple seasons

    Association of the TLR4 Asp299Gly polymorphism with lung function in relation to body mass index

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown conflicting results for the association between TLR4 polymorphism (Asp299Gly) and lung function. We investigated the influence of TLR4 Asp299Gly, a polymorphism, on lung function in a community population.</p> <p>Methods</p> <p>In 2003, a cross-sectional survey was conducted to assess the respiratory health of residents living in and around the town of Humboldt, Saskatchewan, Canada. There were 2090 adults age 18-79 years who completed a questionnaire that included a medical and smoking history, as well as socio-economic and lifestyle variables. Genetic information and lung function test measurements were available on 1725 subjects (754 males and 971 females) of the 2090 respondents. These subjects were selected for further analysis to investigate the association between TLR4 Asp299Gly genotype and forced expiratory volume in the first second in liters (FEV<sub>1</sub>), forced vital capacity in liters (FVC), FEV<sub>1</sub>/FVC ratio, and forced expiratory flow rate in liters/second (FEF<sub>25-75</sub>). Multivariable linear regression analysis was used to investigate associations.</p> <p>Results</p> <p><b>A</b>djusted mean values of FEV<sub>1 </sub>and FVC were significantly different between TLR4 wild type and TLR4 variant groups [Mean Β± S.E.: (TLR4 wild type - FEV<sub>1</sub>: 3.18 Β± 0.02, FVC: 3.95 Β± 0.03; TLR4 variant - FEV<sub>1</sub>: 3.31 Β± 0.06, FVC: 4.14 Β± 0.07)]. Based on multivariable regression analysis, we observed that body mass index (BMI) was associated with decreased FEV<sub>1</sub>/FVC ratio and FEF<sub>25-75 </sub>in TLR4 variant group but not in wild type group.</p> <p>Conclusion</p> <p>BMI may modify the associations of TLR4 Asp299Gly polymorphism with FEV<sub>1</sub>/FVC ratio and FEF<sub>25-75</sub>.</p

    Diagnostic Accuracy of NS1 ELISA and Lateral Flow Rapid Tests for Dengue Sensitivity, Specificity and Relationship to Viraemia and Antibody Responses

    Get PDF
    Dengue is a viral infection of humans that is transmitted by mosquitoes. Dengue is a very important public health problem in many developing countries. Recently, new tests to help diagnose patients with dengue have been developed. Evaluating these tests to see how well they perform in different countries and in different health care settings is an important process that helps to guide health care policy on whether these assays are likely to be useful in making a diagnosis, and if so, when best to use them. Our hospital-based results, using two different types of NS1 tests for diagnosing dengue, indicates that these tests are most sensitive when used during the first 3 days of illness and are most likely to be positive if the patient has primary dengue. Our results also show that a positive NS1 test result is a reflection of the amount of virus in the blood, so that patients with high amounts of virus in the blood are more likely to be NS1 positive. Collectively, the results indicate these NS1 tests deserve inclusion in the diagnostic approach to dengue

    Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles

    Get PDF
    Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action

    A Randomized Controlled Trial of Chloroquine for the Treatment of Dengue in Vietnamese Adults

    Get PDF
    There is no available drug or vaccine against dengue, an acute viral disease that affects ∼50 million people annually in tropical and sub-tropical countries. Chloroquine (CQ), a cheap and well-tolerated drug, inhibits the growth of dengue viruses in the laboratory with concentrations achievable in the body. To measure the antiviral efficacy of CQ in dengue, we conducted a study involving 307 adults with suspected dengue. Patients received a 3-day oral dosage of placebo or CQ early in their illness. Unfortunately, we did not see an effect of CQ on the duration of viral infection. We did, however, observe that CQ had a modest anti-fever effect. In patients treated with CQ, we observed a trend towards a lower incidence of dengue hemorrhagic fever, a severe form of dengue. We did not find any differences in the immune response that can explain this trend. We also found more adverse events, primarily vomiting, with CQ. This trial provides valuable new information on how to perform trials of antiviral drugs for dengue

    Clinical and Virological Factors Influencing the Performance of a NS1 Antigen-Capture Assay and Potential Use as a Marker of Dengue Disease Severity

    Get PDF
    Dengue is the most prevalent arthropod-borne disease in tropical regions. The clinical manifestation may vary from asymptomatic to potentially fatal dengue shock syndrome. Early laboratory confirmation of dengue diagnosis is essential since many symptoms are not specific. Dengue non-structural protein 1 (NS1) may be used in simple antigen-capture ELISA for early detection of dengue virus infection. Our result demonstrated that the Platelia NS1 antigen detection kit had a quite low overall sensitivity. However, sensitivity rises significantly when used in combination with MAC-ELISA. When taking into account the various forms of dengue infection, the NS1 antigen detection was found relatively high in patients sampled during the first 3 days of fever onset, in patients with primary infection, DENV-1 infection, with high level of viremia and in mild form of dengue fever. In asymptomatically infected individuals, RT-PCR assay has proved to be more sensitive than NS1 antigen detection. Moreover, the NS1 antigen level correlated significantly with high viremia and low level of NS1 antigen was associated with more severe disease

    Functional Characterization of Human Cancer-Derived TRKB Mutations

    Get PDF
    Cancer originates from cells that have acquired mutations in genes critical for controlling cell proliferation, survival and differentiation. Often, tumors continue to depend on these so-called driver mutations, providing the rationale for targeted anticancer therapies. To date, large-scale sequencing analyses have revealed hundreds of mutations in human tumors. However, without their functional validation it remains unclear which mutations correspond to driver, or rather bystander, mutations and, therefore, whether the mutated gene represents a target for therapeutic intervention. In human colorectal tumors, the neurotrophic receptor TRKB has been found mutated on two different sites in its kinase domain (TRKBT695I and TRKBD751N). Another site, in the extracellular part of TRKB, is mutated in a human lung adenocarcinoma cell line (TRKBL138F). Lastly, our own analysis has identified one additional TRKB point mutation proximal to the kinase domain (TRKBP507L) in a human melanoma cell line. The functional consequences of all these point mutations, however, have so far remained elusive. Previously, we have shown that TRKB is a potent suppressor of anoikis and that TRKB-expressing cells form highly invasive and metastatic tumors in nude mice. To assess the functional consequences of these four TRKB mutations, we determined their potential to suppress anoikis and to form tumors in nude mice. Unexpectedly, both colon cancer-derived mutants, TRKBT695I and TRKBD751N, displayed reduced activity compared to that of wild-type TRKB. Consistently, upon stimulation with the TRKB ligand BDNF, these mutants were impaired in activating TRKB and its downstream effectors AKT and ERK. The two mutants derived from human tumor cell lines (TRKBL138F and TRKBP507L) were functionally indistinguishable from wild-type TRKB in both in-vitro and in-vivo assays. In conclusion, we fail to detect any gain-of-function of four cancer-derived TRKB point mutations

    In vitro modulation of inflammatory cytokine and IgG levels by extracts of Perna canaliculus

    Get PDF
    BACKGROUND: Inflammation is a predominant characteristic of autoimmune diseases which is characterized by the increased expression of pro-inflammatory cytokines. Soon to be published work from our laboratory has shown that ingestion of Perna canaliculus prevents the development of autoimmune diseases such as Systemic Lupus Erythematosus and rheumatoid arthritis in laboratory animals. The current paper attempts to illustrate how Perna can alleviate inflammation by modulating inflammatory cytokines, cyclooxygenase enzymes and Immunoglobulin-G (IgG) levels. METHODS: In the present study, hydrochloric acid [HCl] and Tween-20 were used to develop extracts of Perna. These extracts were assayed for protein content. Increasing concentrations of these extracts were then tested in cell culture for modulation of inflammatory cytokine, cyclooxygenase enzymes and IgG levels. Parallel tests were run using an available glycogen extract of Perna as a comparison to our in-house laboratory preparations. RESULTS: Tween-20 Perna extracts were found to be more stable and less toxic in cell culture than HCl digest of Perna. They also assayed higher in protein content that HCl extracts. Although both extracts inhibited IgG production in V2E9 hybridomas, Tween-20 extracts were more consistent in IgG suppression than HCl extracts. Overall Tween-20 extracts effectively decreased levels of TNF-Ξ±, IL-1, IL-2 and IL-6 as observed using cytokine bioassays. Twenty micrograms of Tween-20 Perna extracts induced such significant decreases in inflammatory cytokine production that when tested on sensitive cell lines, they very nearly abolished the decrease in viability induced by these cytokines. Tween-20 extracts effectively inhibited both COX-1 and COX-2 cyclooxygenase activity. As a comparison, the glycogen extract also demonstrated a similar though weaker effect on COX-1 and COX-2 enzymes. The active components of both extracts (Tween-20 and glycogen) were observed to possess molecular weights above 100 kDa. Although the anti-cytokine activity of the Tween-20 extract was destroyed by Proteinase-K treatment, the anti-COX-1 and anti-COX-2 activity of both the extracts were not sensitive to protease treatment. CONCLUSION: We have successfully demonstrated modulation in the levels of inflammatory cytokines, cyclooxygenase enzymes and immunoglobulins by our in-house laboratory preparations of Perna canaliculus, whereby suggesting an immunomodulatory role of Perna canaliculus in regulating inflammation

    Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    Get PDF
    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome
    • …
    corecore