22 research outputs found

    Radiographic assessment of the pubic symphysis in elite male adolescent football players:Development and reliability of the Maturing Adolescent Pubic Symphysis (MAPS) classification

    Get PDF
    Introduction: The pubic symphysis is susceptible to growth related injuries long after the adolescent growth spurt. Our study describes the radiographic maturation of the pubic symphysis on pelvic radiographs in adolescent football players and introduces the Maturing Adolescent Pubic Symphysis classification (MAPS classification). Methods: Anteroposterior pelvic radiographs of 105 healthy adolescent male football players between 12 and 24 years old were used to develop the classification system. The radiological scoring of the symphyseal joint was developed over five rounds. The final MAPS classification items were scored in random order by two experienced readers, blinded to the age of the participant and to each other's scoring. The inter- and intra-rater reliability were examined using weighted kappa (κ). Results: We developed a classification system with descriptive definitions and an accompanying pictorial atlas. The symphyseal joint was divided into three regions: the superior corners, and the upper and lower regions of the joint line. Inter-rater reliability was substantial to almost perfect: superior region: κ = 0.70 (95% CI 0.60–––0.79), upper region of the joint line: κ = 0.89 (95% CI 0.86–––0.92), lower region of the joint line: κ = 0.65 (95% CI 0.55–––0.75). The intra-observer reliability showed similar results. Conclusion: The Maturing Adolescent Pubic Symphysis classification (MAPS classification) is a reliable descriptive classification of the radiographic maturation of the pubic symphysis joint in athletic males. The stages can provide a basis for understanding in clinical practice and will allow future research in this field.</p

    Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation

    Get PDF
    BACKGROUND: Preterm delivery causes substantial neonatal mortality and morbidity. Unrecognized intra-amniotic infections caused by cultivation-resistant microbes may play a role. Molecular methods can detect, characterize and quantify microbes independently of traditional culture techniques. However, molecular studies that define the diversity and abundance of microbes invading the amniotic cavity, and evaluate their clinical significance within a causal framework, are lacking. METHODS AND FINDINGS: In parallel with culture, we used broad-range end-point and real-time PCR assays to amplify, identify and quantify ribosomal DNA (rDNA) of bacteria, fungi and archaea from amniotic fluid of 166 women in preterm labor with intact membranes. We sequenced up to 24 rRNA clones per positive specimen and assigned taxonomic designations to approximately the species level. Microbial prevalence, diversity and abundance were correlated with host inflammation and with gestational and neonatal outcomes. Study subjects who delivered at term served as controls. The combined use of molecular and culture methods revealed a greater prevalence (15% of subjects) and diversity (18 taxa) of microbes in amniotic fluid than did culture alone (9.6% of subjects; 11 taxa). The taxa detected only by PCR included a related group of fastidious bacteria, comprised of Sneathia sanguinegens, Leptotrichia amnionii and an unassigned, uncultivated, and previously-uncharacterized bacterium; one or more members of this group were detected in 25% of positive specimens. A positive PCR was associated with histologic chorioamnionitis (adjusted odds ratio [OR] 20; 95% CI, 2.4 to 172), and funisitis (adjusted OR 18; 95% CI, 3.1 to 99). The positive predictive value of PCR for preterm delivery was 100 percent. A temporal association between a positive PCR and delivery was supported by a shortened amniocentesis-to-delivery interval (adjusted hazard ratio 4.6; 95% CI, 2.2 to 9.5). A dose-response association was demonstrated between bacterial rDNA abundance and gestational age at delivery (r(2) = 0.42; P<0.002). CONCLUSIONS: The amniotic cavity of women in preterm labor harbors DNA from a greater diversity of microbes than previously suspected, including as-yet uncultivated, previously-uncharacterized taxa. The strength, temporality and gradient with which these microbial sequence types are associated with preterm delivery support a causal relationship

    Reproducible radiomics through automated machine learning validated on twelve clinical applications

    Get PDF
    Radiomics uses quantitative medical imaging features to predict clinical outcomes. Currently, in a new clinical application, findingthe optimal radiomics method out of the wide range of available options has to be done manually through a heuristic trial-anderror process. In this study we propose a framework for automatically optimizing the construction of radiomics workflows perapplication. To this end, we formulate radiomics as a modular workflow and include a large collection of common algorithms foreach component. To optimize the workflow per application, we employ automated machine learning using a random search andensembling. We evaluate our method in twelve different clinical applications, resulting in the following area under the curves: 1)liposarcoma (0.83); 2) desmoid-type fibromatosis (0.82); 3) primary liver tumors (0.80); 4) gastrointestinal stromal tumors (0.77);5) colorectal liver metastases (0.61); 6) melanoma metastases (0.45); 7) hepatocellular carcinoma (0.75); 8) mesenteric fibrosis(0.80); 9) prostate cancer (0.72); 10) glioma (0.71); 11) Alzheimer’s disease (0.87); and 12) head and neck cancer (0.84). Weshow that our framework has a competitive performance compared human experts, outperforms a radiomics baseline, and performssimilar or superior to Bayesian optimization and more advanced ensemble approaches. Concluding, our method fully automaticallyoptimizes the construction of radiomics workflows, thereby streamlining the search for radiomics biomarkers in new applications.To facilitate reproducibility and future research, we publicly release six datasets, the software implementation of our framework,and the code to reproduce this study

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry

    Get PDF
    YesBackground. The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. Methodology/Principal Findings. To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. Conclusions. This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.This work was supported by the grants from the Flanders Research Foundation, SOFI-B Grant to CRK, http://www.fwo.be/, a Public Health Service Grant from the National Institutes of Health to CEC, (grant # AI-051334), https://www.nih.gov/ and a grant from the Grant Agency of the Czech Republic to DS and MS (P302/12/0574, GP14-29596P), https:// gacr.cz/

    Osteosclerotic Metaphyseal Dysplasia Due to a Likely Pathogenic LRRK1 Variant as a Cause of Recurrent Long Bone Fractures

    Get PDF
    ABSTRACT Osteosclerotic metaphyseal dysplasia (OSMD) is a very rare autosomal‐recessive disease caused by mutations in the leucine‐rich repeat kinase 1 (LRRK1) gene. It is a sclerosing skeletal dysplasia characterized by osteosclerosis of the long bones, predominantly at the metaphyses and vertebrae. Phenotypic features can be short stature, pathological fractures, delayed development, and hypotonia, but they are not uniformly present, and relatively few cases are known from the literature. A 40‐year‐old man was seen at our bone center because of nonspontaneous multiple peripheral low‐energy trauma fractures since puberty. He had no other complaints and his family history was negative. Except for a relatively short stature (167 cm; −1.5 SD), there were no abnormalities on examination, including laboratory tests. Initially, a suspicion was raised of osteogenesis imperfecta, but bone mineral density was high and X‐rays of the whole skeleton showed osteosclerosis of the metaphyses of long bones and vertebrae. Whole‐exome sequencing showed a homozygous, likely pathogenic, variant (American College of Medical Genetics and Genomics criteria class 4) in the LRRK1 gene, fitting the diagnosis of OSMD. In conclusion, we described a 40‐year‐old patient with osteosclerotic metaphyseal dysplasia caused by a homozygous variant in the LRRK1 gene, resulting in multiple fractures of the long bones without other features of the disease, adding to the phenotypic variation of OSMD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    A Bayesian approach for diagnostic accuracy of malignant peripheral nerve sheath tumors: A systematic review and meta-analysis

    Get PDF
    Background: Malignant peripheral nerve sheath tumors (MPNST) carry a dismal prognosis and require early detection and complete resection. However, MPNSTs are prone to sampling errors and biopsies or resections are cumbersome and possibly damaging in benign peripheral nerve sheath tumor (BPNST). This study aimed to systematically review and quantify the diagnostic accuracy of noninvasive tests for distinguishing MPNST from BPNST. Methods: Studies on accuracy of MRI, FDG-PET (fluorodeoxyglucose positron emission tomography), and liquid biopsies were identified in PubMed and Embase from 2000 to 2019. Pooled accuracies were calculated using Bayesian bivariate meta-analyses. Individual level-patient data were analyzed for ideal maximum standardized uptake value (SUVmax) threshold on FDG-PET. Results: Forty-three studies were selected for qualitative synthesis including data on 1875 patients and 2939 lesions. Thirty-five studies were included for meta-analyses. For MRI, the absence of target sign showed highest sensitivity (0.99, 95% CI: 0.94-1.00); ill-defined margins (0.94, 95% CI: 0.88-0.98); and perilesional edema (0.95, 95% CI: 0.83-1.00) showed highest specificity. For FDG-PET, SUVmax and tumor-to-liver ratio show similar accuracy; sensitivity 0.94, 95% CI: 0.91-0.97 and 0.93, 95% CI: 0.87-0.97, respectively, specificity 0.81, 95% CI: 0.76-0.87 and 0.79, 95% CI: 0.70-0.86, respectively. SUVmax ≥3.5 yielded the best accuracy with a sensitivity of 0.99 (95% CI: 0.93-1.00) and specificity of 0.75 (95% CI: 0.56-0.90). Conclusions: Biopsies may be omitted in the presence of a target sign and the absence of ill-defined margins or perilesional edema. Because of diverse radiological characteristics of MPNST, biopsies may still commonly be required. In neurofibromatosis type 1, FDG-PET scans may further reduce biopsies. Ideal SUVmax threshold is ≥3.5
    corecore