769 research outputs found
Colloids in light fields: particle dynamics in random and periodic energy landscapes
The dynamics of colloidal particles in potential energy landscapes have
mainly been investigated theoretically. In contrast, here we discuss the
experimental realization of potential energy landscapes with the help of light
fields and the observation of the particle dynamics by video microscopy. The
experimentally observed dynamics in periodic and random potentials are compared
to simulation and theoretical results in terms of, e.g. the mean-squared
displacement, the time-dependent diffusion coefficient or the non-Gaussian
parameter. The dynamics are initially diffusive followed by intermediate
subdiffusive behaviour which again becomes diffusive at long times. How
pronounced and extended the different regimes are, depends on the specific
conditions, in particular the shape of the potential as well as its roughness
or amplitude but also the particle concentration. Here we focus on dilute
systems, but the dynamics of interacting systems in external potentials, and
thus the interplay between particle-particle and particle-potential
interactions, is also mentioned briefly. Furthermore, the observed dynamics of
dilute systems resemble the dynamics of concentrated systems close to their
glass transition, with which it is compared. The effect of certain potential
energy landscapes on the dynamics of individual particles appears similar to
the effect of interparticle interactions in the absence of an external
potential
The Kinematics and Metallicity of the M31 Globular Cluster System
With the ultimate aim of distinguishing between various models describing the
formation of galaxy halos (e.g. radial or multi-phase collapse, random
mergers), we have completed a spectroscopic study of the globular cluster
system of M31. We present the results of deep, intermediate-resolution,
fibre-optic spectroscopy of several hundred of the M31 globular clusters using
the Wide Field Fibre Optic Spectrograph (WYFFOS) at the William Herschel
Telescope in La Palma, Canary Islands. These observations have yielded precise
radial velocities (+/-12 km/s) and metallicities (+/-0.26 dex) for over 200
members of the M31 globular cluster population out to a radius of 1.5 degrees
from the galaxy center. Many of these clusters have no previous published
radial velocity or [Fe/H] estimates, and the remainder typically represent
significant improvements over earlier determinations. We present analyses of
the spatial, kinematic and metal abundance properties of the M31 globular
clusters. We find that the abundance distribution of the cluster system is
consistent with a bimodal distribution with peaks at [Fe/H] = -1.4 and -0.5.
The metal-rich clusters demonstrate a centrally concentrated spatial
distribution with a high rotation amplitude, although this population does not
appear significantly flattened and is consistent with a bulge population. The
metal-poor clusters tend to be less spatially concentrated and are also found
to have a strong rotation signature.Comment: 33 pages, 20 figure
A very luminous, highly extinguished, very fast nova - V1721 Aquilae
Fast novae are primarily located within the plane of the Galaxy, slow novae
are found within its bulge. Because of high interstellar extinction along the
line of sight many novae lying close to the plane are missed and only the
brightest seen. One nova lying very close to the Galactic plane is V1721
Aquilae, discovered in outburst on 2008 September 22. Spectra obtained 2.69
days after outburst revealed very high expansion velocities (FWHM ~6450 km/s).
In this paper we have used available pre- and post-outburst photometry and
post-outburst spectroscopy to conclude that the object is a very fast,
luminous, and highly extinguished A_V=11.6+/-0.2) nova system with an average
ejection velocity of ~3400 km/s. Pre-outburst near-IR colours from 2MASS
indicate that at quiescence the object is similar to many quiescent CNe and
appears to have a main sequence/sub-giant secondary rather than a giant. Based
on the speed of decline of the nova and its emission line profiles we
hypothesise that the axis ratio of the nova ejecta is ~1.4 and that its
inclination is such that the central binary accretion disc is face-on to the
observer. The accretion disc's blue contribution to the system's near-IR
quiescent colours may be significant. Simple models of the nova ejecta have
been constructed using the morphological modelling code XS5, and the results
support the above hypothesis. Spectral classification of this object has been
difficult owing to low S/N levels and high extinction, which has eliminated all
evidence of any He/N or FeII emission within the spectra. We suggest two
possibilities for the nature of V1721 Aql: that it is a U Sco type RN with a
sub-giant secondary or, less likely, that it is a highly energetic bright and
fast classical nova with a main sequence secondary. Future monitoring of the
object for possible RN episodes may be worthwhile, as would archival searches
for previous outbursts.Comment: 9 pages 10 figures, accepted for publication in A&A. Abstract has
been slightly shortened from published versio
On the Progenitor System of Nova V2491 Cygni
Nova V2491 Cyg is one of just two detected pre-outburst in X-rays. The light
curve of this nova exhibited a rare "re-brightening" which has been attributed
by some as the system being a polar, whilst others claim that a magnetic WD is
unlikely. By virtue of the nature of X-ray and spectroscopic observations the
system has been proposed as a recurrent nova, however the adoption of a 0.1 day
orbital period is generally seen as incompatible with such a system. In this
research note we address the nature of the progenitor system and the source of
the 0.1 day periodicity. Through the combination of Liverpool Telescope
observations with published data and archival 2MASS data we show that V2491
Cyg, at a distance of 10.5 - 14 kpc, is likely to be a recurrent nova of the U
Sco-class; containing a sub-giant secondary and an accretion disk, rather than
accretion directly onto the poles. We show that there is little evidence, at
quiescence, supporting a ~ 0.1 day periodicity, the variation seen at this
stage is likely caused by flickering of a re-established accretion disk. We
propose that the periodicity seen shortly after outburst is more likely related
to the outburst rather than the - then obscured - binary system. Finally we
address the distance to the system, and show that a significantly lower
distance (~ 2 kpc) would result in a severely under-luminous outburst, and as
such favour the larger distance and the recurrent nova scenario.Comment: 5 pages, 3 images, accepted for publication in A&A as a research not
Signatures of granular microstructure in dense shear flows
Granular materials react to shear stresses differently than do ordinary
fluids. Rather than deforming uniformly, materials such as dry sand or
cohesionless powders develop shear bands: narrow zones containing large
relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5].
Since shear bands mark areas of flow, material failure and energy dissipation,
they play a crucial role for many industrial, civil engineering and geophysical
processes[6]. They also appear in related contexts, such as in lubricating
fluids confined to ultra-thin molecular layers[7]. Detailed information on
motion within a shear band in a three-dimensional geometry, including the
degree of particle rotation and inter-particle slip, is lacking. Similarly,
only little is known about how properties of the individual grains - their
microstructure - affect movement in densely packed material[5]. Combining
magnetic resonance imaging, x-ray tomography, and high-speed video particle
tracking, we obtain the local steady-state particle velocity, rotation and
packing density for shear flow in a three-dimensional Couette geometry. We find
that key characteristics of the granular microstructure determine the shape of
the velocity profile.Comment: 5 pages, incl. 4 figure
Rheophysics of dense granular materials : Discrete simulation of plane shear flows
We study the steady plane shear flow of a dense assembly of frictional,
inelastic disks using discrete simulation and prescribing the pressure and the
shear rate. We show that, in the limit of rigid grains, the shear state is
determined by a single dimensionless number, called inertial number I, which
describes the ratio of inertial to pressure forces. Small values of I
correspond to the quasi-static regime of soil mechanics, while large values of
I correspond to the collisional regime of the kinetic theory. Those shear
states are homogeneous, and become intermittent in the quasi-static regime.
When I increases in the intermediate regime, we measure an approximately linear
decrease of the solid fraction from the maximum packing value, and an
approximately linear increase of the effective friction coefficient from the
static internal friction value. From those dilatancy and friction laws, we
deduce the constitutive law for dense granular flows, with a plastic Coulomb
term and a viscous Bagnold term. We also show that the relative velocity
fluctuations follow a scaling law as a function of I. The mechanical
characteristics of the grains (restitution, friction and elasticity) have a
very small influence in this intermediate regime. Then, we explain how the
friction law is related to the angular distribution of contact forces, and why
the local frictional forces have a small contribution to the macroscopic
friction. At the end, as an example of heterogeneous stress distribution, we
describe the shear localization when gravity is added.Comment: 24 pages, 19 figure
Construction and Analysis of High-Complexity Ribosome Display Random Peptide Libraries
Random peptide libraries displayed on the ribosome are becoming a new tool for the in vitro selection of biologically relevant macromolecules, including epitopes, antagonists, enzymes, and cell-surface receptors. Ribosome display is a cell-free system of coupling individual nascent proteins (phenotypes) to their corresponding mRNA (genotypes) by the formation of stable protein-ribosome-mRNA complexes and permitting the selection of a functional nascent protein by iterative cycles of panning and reverse transcription-polymerase chain reaction (RT-PCR) amplification in vitro. The complexity of the random peptide library is critical for the success of a panning experiment; greater the diversity of sequences within the library, the more likely it is that the library comprises sequences that can bind a given target with specific affinity. Here, we have used the cell-free system Escherichia coli S30 lysate to construct high-complexity random peptide libraries (>1014 independent members) by introducing strategies that are different from the methods described by Mattheakis et al. and Lamla et al. The key step in our method is to produce nanomole (nmol) amounts of DNA elements that are necessary for in vitro transcription/translation by using PCR but not plasmid DNA. Library design strategies and protocols that facilitate rapid identification are also presented
Properties, evolution and morpho-kinematical modelling of the very fast nova V2672 Oph (Nova Oph 2009), a clone of U Sco
V2672 Oph reached maximum brightness V=11.35 on 2009 August 16.5. With
observed t2(V)=2.3 and t3(V)=4.2 days decline times, it is one of the fastest
known novae, being rivalled only by V1500 Cyg (1975) and V838 Her (1991) among
classical novae, and U Sco among the recurrent ones. The line of sight to the
nova passes within a few degrees of the Galactic centre. The reddening of V2672
Oph is E(B-V)=1.6 +/-0.1, and its distance ~19 kpc places it on the other side
of the Galactic centre at a galacto-centric distance larger than the solar one.
The lack of an infrared counterpart for the progenitor excludes the donor star
from being a cool giant like in RS Oph or T CrB. With close similarity to U
Sco, V2672 Oph displayed a photometric plateau phase, a He/N spectrum
classification, extreme expansion velocities and triple peaked emission line
profiles during advanced decline. The full width at zero intensity of Halpha
was 12,000 km/s at maximum, and declined linearly in time with a slope very
similar to that observed in U Sco. We infer a WD mass close to the
Chandrasekhar limit and a possible final fate as a SNIa. Morpho-kinematical
modelling of the evolution of the Halpha profile suggests that the overall
structure of the ejecta is that of a prolate system with polar blobs and an
equatorial ring. The density in the prolate system appeared to decline faster
than that in the other components. V2672 Oph is seen pole-on, with an
inclination of 0+/-6 deg and an expansion velocity of the polar blobs of 4800
+900/-800 km/s. On the basis of its remarkable similarity to U Sco, we suspect
this nova may be a recurrent. Given the southern declination, the faintness at
maximum, the extremely rapid decline and its close proximity to the Ecliptic,
it is quite possible that previous outbursts of V2672 Oph have been missed.Comment: in press in MNRA
Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers
Sensitive and fast force measurements are performed on sheared granular
layers undergoing stick-slip motion, along with simultaneous imaging. A full
study has been done for spherical particles with a +-20% size distribution.
Stick-slip motion due to repetitive fluidization of the layer occurs for low
driving velocities. Between major slip events, slight creep occurs that is
variable from one event to the next. The effects of changing the stiffness k
and velocity V of the driving system are studied in detail. The stick-slip
motion is almost periodic for spherical particles over a wide range of
parameters, but becomes irregular when k is large and V is relatively small. At
larger V, the motion becomes smoother and is affected by the inertia of the
upper plate bounding the layer. Measurements of the period T and amplitude A of
the relative motion are presented as a function of V. At a critical value Vc, a
transition to continuous sliding motion occurs that is discontinuous for k not
too large. The time dependence of the instantaneous velocity of the upper plate
and the frictional force produced by the granular layer are determined within
individual slipping events. The force is a multi-valued function of the
instantaneous velocity, with pronounced hysteresis and a sudden drop prior to
resticking. Measurements of vertical displacement reveal a small dilation of
the material (about one tenth of the mean particle size in a layer 20 particles
deep) associated with each slip event. Finally, optical imaging reveals that
localized microscopic rearrangements precede (and follow) each slip event. The
behavior of smooth particles is contrasted with that of rough particles.Comment: 20, pages, 17 figures, to appear in Phys. Rev.
Selection of Anti-Sulfadimidine Specific ScFvs from a Hybridoma Cell by Eukaryotic Ribosome Display
BACKGROUND:Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes. METHODOLOGY/PRINCIPAL FINDINGS:In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM(2)) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA-ribosome-antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM(2)-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM(2) by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis. CONCLUSIONS/SIGNIFICANCE:The selection of anti-SM(2) specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs
- …