4,179 research outputs found

    The Hvar survey for roAp stars: II. Final results (Research Note)

    Full text link
    The 60 known rapidly oscillating Ap (roAp) stars are excellent laboratories to test pulsation models in the presence of stellar magnetic fields. Our survey is dedicated to search for new group members in the Northern Hemisphere. We attempt to increase the number of known chemically peculiar stars that are known to be pulsationally unstable. About 40 h of new CCD photometric data of 21 roAp candidates, observed at the 1m Austrian-Croatian Telescope (Hvar Observatory) are presented. We carefully analysed these to search for pulsations in the frequency range of up to 10mHz. No new roAp star was detected among the observed targets. The distribution of the upper limits for roAp-like variations is similar to that of previoius similar efforts using photomultipliers and comparable telescope sizes. In addition to photometric observations, we need to consolidate spectroscopic information to select suitable targets.Comment: 8 pages, 5 figures, accepted by Astronomy & Astrophysic

    The asteroseismological potential of the pulsating DB white dwarf stars CBS 114 and PG 1456+103

    Full text link
    We have acquired 65 h of single-site time-resolved CCD photometry of the pulsating DB white dwarf star CBS 114 and 62 h of two-site high-speed CCD photometry of another DBV, PG 1456+103. The pulsation spectrum of PG 1456+103 is complicated and variable on time scales of about one week and could only partly be deciphered with our measurements. The modes of CBS 114 are more stable in time and we were able to arrive at a frequency solution somewhat affected by aliasing, but still satisfactory, involving seven independent modes and two combination frequencies. These frequencies also explain the discovery data of the star, taken 13 years earlier. We find a mean period spacing of 37.1 +/- 0.7 s significant at the 98% level between the independent modes of CBS 114 and argue that they are due to nonradial g-mode pulsations of spherical degree l=1. We performed a global search for asteroseismological models of CBS 114 using a genetic algorithm, and we examined the susceptibility of the results to the uncertainties of the observational frequency determinations and mode identifications (we could not provide m values). The families of possible solutions are identified correctly even without knowledge of m. Our optimal model suggests Teff = 21,000 K and M_* = 0.730 M_sun as well as log(M_He/M_*) = -6.66, X_O = 0.61. This measurement of the central oxygen mass fraction implies a rate for the ^12C(alpha,gamma)^16O nuclear reaction near S_300=180 keV b, consistent with laboratory measurements.Comment: 10 pages, 10 embedded figures, 3 embedded tables. Accepted for publication in MNRA

    Symbol Tables and Branch Tables: Linking Applications Together

    Get PDF
    This document explores the computer techniques used to execute software whose parts are compiled and linked separately. The computer techniques include using a branch table or indirect address table to connect the parts. Methods of storing the information in data structures are discussed as well as differences between C and C++

    Space Telecommunications Radio System (STRS) Application Repository Design and Analysis

    Get PDF
    The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process

    Space-Based Communications Buffer Sizing

    Get PDF
    This paper considers the transmission interruption timing for space-based communications due to weather. The length of the weather interruption is one of the main influences determining the size of the storage needed to save the data to be sent at a later time. This analysis uses the Markov chain probabilities for weather to determine how many cloudy or rainy time steps in a row will not allow data transmission. The mean and standard deviation are computed, which along with the average data rate to be sent can be used to help size storage buffers in which to save data between periods of good weather

    Attempts to Monopolize and No-Fault Monopolization

    Get PDF

    The pulsating DA white dwarf star EC 14012-1446: results from four epochs of time-resolved photometry

    Full text link
    The pulsating DA white dwarfs are the coolest degenerate stars that undergo self-driven oscillations. Understanding their interior structure will help to understand the previous evolution of the star. To this end, we report the analysis of more than 200 h of time-resolved CCD photometry of the pulsating DA white dwarf star EC 14012-1446 acquired during four observing epochs in three different years, including a coordinated three-site campaign. A total of 19 independent frequencies in the star's light variations together with 148 combination signals up to fifth order could be detected. We are unable to obtain the period spacing of the normal modes and therefore a mass estimate of the star, but we infer a fairly short rotation period of 0.61 +/- 0.03 d, assuming the rotationally split modes are l=1. The pulsation modes of the star undergo amplitude and frequency variations, in the sense that modes with higher radial overtone show more pronounced variability and that amplitude changes are always accompanied by frequency variations. Most of the second-order combination frequencies detected have amplitudes that are a function of their parent mode amplitudes, but we found a few cases of possible resonantly excited modes. We point out the complications in the analysis and interpretation of data sets of pulsating white dwarfs that are affected by combination frequencies of the form f_A+f_B-f_C intruding into the frequency range of the independent modes.Comment: 14 pages, 6 figures, 6 tables. MNRAS, in pres
    corecore