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Space-Based Communications Buffer Sizing 
 

Louis M. Handler 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

1.0 Introduction  
This paper considers the transmission interruption timing for space-based communications due to 

weather. The length of the weather interruption is one of the main influences determining the size of the 
storage needed to save the data to be sent at a later time. This analysis uses the Markov chain probabilities 
for weather to determine how many cloudy or rainy time steps in a row will not allow data transmission. 
The mean and standard deviation are computed, which along with the average data rate to be sent can be 
used to help size storage buffers in which to save data between periods of good weather. 

Nomenclature 

RF radiofrequency 

Symbols 

a availability ratio 
A event A 
B event B 
n number of time steps 
N number of time steps before success or failure can be determined 
p speed-up factor 
P probability function of a specified event 
P(A)  probability of occurrence of event A 
P(A B)∩  probability of occurrence of both event A and event B at same time; that is, intersection of the 

two events 
P(A B)∪   probability of occurrence of either event A or event B at same time; that is, union of the two 

events 
P(B)  probability of event B 
Pr[x,y] probability of weather y (0 or 1) at the current time step given weather x (0 or 1) at the 

previous time step 
Rd average data rate per time step 
X total minutes in an average duty cycle 
Y available minutes in an average duty cycle 
σ standard deviation of number of time steps in a row of bad weather 
σ² variance of number of time steps in a row of bad weather 
Σ summation from lower to upper limit 
∆T size of each time step 
μ average number of time steps in a row of bad weather 
μgood average number of time steps in a row of good weather 



NASA/TM—2018-219927 2 

2.0 Buffer Sizing  
2.1 Markov Probabilities  

This paper uses the Markov chain probabilities for weather, where the weather at the next time step 
depends only on the weather at the current time step. This paper will determine the probabilities for how 
many time steps in a row will not allow data transmission. Using the values for how long data cannot be 
transmitted due to weather, buffer size will be computed to hold the data not transmitted. 

The transmission frequency determines whether cloudy weather or rainy weather can block 
transmission. For a radiofrequency (RF) transmitter and/or receiver combination, rain would block the 
signals but mere cloudiness would not. For an optical transmitter and/or receiver combination, cloudiness 
would block the signal. Optically, rain is not treated separately since it rarely appears without clouds. 
Although it is possible to have various levels of cloudy or rainy in the Markov chain model, only two 
levels were used to simplify the model. The levels are clear to allow signals to pass and either cloudy or 
rainy that blocks the signals. 

The Markov chain uses state transition probabilities. In this case, the probabilities are determined for 
the change from clear at one time step to cloudy or rainy at the following time step and vice versa. These 
states are denoted by 0 and 1, with 0 for rainy or cloudy, and 1 for clear. 

The definitions of the transition probabilities are explained as follows: 
 
1. Pr[0,0] is the probability of cloudy or rainy given cloudy or rainy at the previous time step. 
2. Pr[0,1] is the probability of clear given cloudy or rainy at the previous time step. 
3. Pr[1,0] is the probability of cloudy or rainy given clear at the previous time step. 
4. Pr[1,1] is the probability of clear given clear at the previous time step. 
 
It is assumed that there are no intermediate states, so it must either be clear or be cloudy or rainy at 

each time step, regardless of the value at the previous time step. Thus, the probabilities add up to 1: 

 Pr[0,0] Pr[0,1] 1+ =  (1) 

 Pr[1,0] Pr[1,1] 1+ =  (2) 

The mean and standard deviation of the number of bad weather time steps in a row can be used to 
help size storage buffers to save data between periods of clear weather. 

The buffer sizing may be estimated by Monte Carlo simulation or computation. For simulation, the 
initial weather state is computed at each Earth terminal randomly. It should not matter which type of 
weather is at the start because if there was a higher likelihood of one type of weather over the other, the 
weather would soon change according to the Markov probabilities specified. To eliminate any bias 
introduced by this assumption at this initial point, the initial state is ignored as far as any data 
transmission is concerned. 

For the next time step, the probability of a cloudy or rainy time period is computed, given the 
previous time period’s weather state at each Earth terminal. This probability is used to determine the 
weather state using a random variable. That step is repeated by storing the current weather state so that it 
can be tested by the next step as the previous weather state. 

Statistics are computed for the number of each type of weather period, the amount of data lost or 
received during each period, the sequential number cloudy or rainy time steps, and percentages. 
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2.2 Probabilities of Length of Bad Weather  
The rest of this paper uses the Markov probabilities for weather to determine how many cloudy or 

rainy time steps are likely in a row. The probabilities allow the weather to change gradually from the 
initial conditions, using intermediate values. The transition probabilities are assumed to remain constant 
long enough for the computations to be reasonably valid. The fact that some locations have a rainy or dry 
season during which the probabilities change is not taken into account here. 

The mean and standard deviation of the number of time steps in a row of bad weather can be used to 
help size storage buffers to save data between periods of good weather. In Equation (3), probabilities are 
computed for each number of bad weather periods in a sequence.  

The probability of n steps in a row of type 0 is as follows. For the probability of 1 exactly; that is, 
probability of 0 then 1 is  

 P(1) Pr[0,1]=  (3a) 

For the probability of 2 exactly; that is, probability of 0 then 0 then 1 is  

 P(2) Pr[0,0]Pr[0,1]=  (3b) 

For the probability of 3 exactly; that is, probability of 0 then 0 then 0 then 1 is 

 P(3) Pr[0,0]Pr[0,0]Pr[0,1]=  (3c) 

For the probability of 4 exactly; that is, probability of 0 then 3 more 0’s then 1 is 

 3P(4) Pr[0,0] Pr[0,1]=   (3d) 

Or more generally, for the probability of n exactly; that is, probability of 0 then (n–1) more 0’s then 1 is  

 1P( ) Pr[0,0] Pr[0,1]nn −=  (3e) 

The probability for each number of bad weather time steps in a row is used to compute the mean and 
standard deviation of the number of bad weather time steps in a row, which are used to compute the 
amount of data lost during each period of bad weather. 

2.3 Average  
The expected value of the number of bad weather time steps in a row (0’s in a row), denoted by µ, is 

obtained by summing the number of 0’s in a row multiplied by its probability, P(n): 

 1

1
Pr[0,0] Pr[0,1]n

n
n

∞
−

=

µ =∑  (4) 

The summation will converge when the probabilities are less than 1. The successive terms start 
decreasing when 

 1Pr[0,0] Pr[0,1] ( 1)Pr[0,0] Pr[0,1]n nn n− > +  (5) 
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Since the probabilities are positive, divide both sides by 1{Pr[0,0] Pr[0,1]}n−  to obtain 

 ( 1)Pr[0,0]n n> +  (6) 

Subtracting { Pr[0,0]}n  from both sides and solving for n results in 

 Pr[0,0]
(1 Pr[0,0])

n >
−

 (7) 

Since this value of n may be large when the terms start decreasing and convergence may actually 
happen much later, it is better to solve Equation (4) in closed form. This may be done similar to the proof 
for the sum of a geometric series. 

Equation (4) can be written as 

 21Pr[0,1] 2Pr[0,0]Pr[0,1] 3Pr[0,0] Pr[0,1] ( 1)Pr[0,0] Pr[0,1]nnµ = + + + + + +   (8) 

Multiply Equation (8) by Pr[0,0] and line up the exponents: 

 2Pr[0,0] Pr[0,0]Pr[0,1] 2Pr[0,0] Pr[0,1] Pr[0,0] Pr[0,1]nnµ = + + + +   (9) 

Then subtract the two equations: 

 2Pr[0,0] Pr[0,1] Pr[0,0]Pr[0,1] Pr[0,0] Pr[0,1] Pr[0,0] Pr[0,1]nµ −µ = + + + + +   (10) 

Changing notation, Equation (10) may be expressed as 

 1
1

Pr[0,0] Pr[0,0] Pr[0,1]n
n
∞ −
=

µ −µ =∑  (11) 

But the right-hand side can be shown to be equal to 1, either by summing the pieces of Equation (3) 
because the probabilities have to add up to 1 or by going back to the sum of a geometric series and using 
Pr[0,0] 1 Pr[0,1]= − ; that is 

 1
1

Pr[0,1] Pr[0,1]Pr[0,0] Pr[0,1] 1
1 Pr[0,0] Pr[0,1]

n
n
∞ −
=

= = =
−∑  (12) 

Solving Equation (11) for µ after substituting Equation (12): 

 1 1
1 Pr[0,0] Pr[0,1]

µ = =
−

 (13) 

2.4 Standard Deviation  
The standard deviation is done similarly. The standard deviation squared of the number of time steps 

in a row of bad weather (0’s in a row), denoted by σ2, is obtained by summing: 

 2 2 1
1
( ) Pr[0,0] Pr[0,1]n

n
n∞ −

=
σ = −µ∑  (14) 
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Expanding: 

 2 2 2( ) 2n n n−µ = − µ + µ  (15) 

Substituting Equation (15) into Equation (14), applying the distributive law, and using Equations (4) 
and (12) results in 

 { }2 2 1 2 2
1

Pr[0,0] Pr[0,1] 2n
n

n∞ −
=

σ = − µ + µ∑  (16) 

Simplifying the terms on the right: 

 { }2 2 1 2
1

Pr[0,0] Pr[0,1]n
n

n∞ −
=

σ = −µ∑  (17) 

Multiplying both sides by Pr[0,0]: 

 { }2 2 2
1

Pr[0,0] Pr[0,0] Pr[0,1] Pr[0,0]n
n

n∞
=

σ = −µ∑  (18) 

To match up the exponents, set n = m–1 in the previous equation: 

 { }2 2 1 2
2

Pr[0,0] ( 1) Pr[0,0] Pr[0,1] Pr[0,0]m
m

m∞ −
=

σ = − −µ∑  (19) 

The lower limit of summation can be extended to m = 1 to match the summation in Equation (17). 
Rename back to n. Then subtract Equation (19) from Equation (17): 

 { }2 2 2 2 1 2
1

Pr[0,0] ( ( 1) )Pr[0,0] Pr[0,1] (1 Pr[0,0])n
n

n n∞ −
=

σ − σ = − − −µ −∑  (20) 

Recalling 

 2 2 2 2 2 2( 1) ( 2 1) 2 1 2 1n n n n n n n n n− − = − − + = − + − = −  (21) 

Substituting Equation (21) into Equation (20): 

 { }2 2 2
1

Pr[0,0] (2 1)Pr[0,0] Pr[0,1] (1 Pr[0,0])n
n

n∞
=

σ − σ = − −µ −∑  (22) 

Using the distributive law and substituting Equations (4) and (12) into Equation (22): 

 2 2(1 Pr[0,0]) {2 1} (1 Pr[0,0])σ − = µ − −µ −  (23) 

From Equation (13), substitute for 1(1 Pr[0,0])− =
µ

:  

 
2 2

2 1σ µ
= µ − −

µ µ
 (24) 
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Simplify as 

 
2

1σ
= µ −

µ
 (25) 

or finally as 

 2 ( 1)σ = µ µ −  (26) 

2.5 Implications 

2.5.1 Buffer Size Computation 
To compute the size of a buffer, multiply the average outage in the number of bad weather steps, µ, 

times the size of each time step, ΔT, times the average data rate per time step, Rd: 

 Size dT Rµ = µ ∆  (27) 

For safety, the 3σ value would be 

 3Size ( 3 ) dT Rσ = µ + σ ∆  (28) 

For a normal distribution of values, the 3σ size would include 99.7 percent of the data. This size may 
be improved by compression, depending on the type of data possibly with some tradeoffs in timing. 

2.5.2 Buffer Size Adequacy 
This buffer size may not be adequate if the good weather period is not long enough to send the data 

accumulated during the bad weather period. Equation (13) specifies µ for bad weather, but there is a 
corresponding µgood for good weather. Similar to Equation (4), the expected value of the number of time 
steps in a row of good weather (1’s in a row), denoted by µgood, is obtained by summing the number of 1’s 
in a row by its probability: 

 1good 1
Pr[1,1] Pr[1,0]n

n
n∞ −

=
µ =∑  (29) 

As in the analysis above, it can be found to be 

 good
1 1

1 Pr[1,1] Pr[1,0]
µ = =

−
 (30) 

The data keep accumulating during periods of bad weather, even if periods of good weather intervene, 
unless the bad weather outlasts the good by enough that the transmission of both the new and stored data 
cannot be accomplished. The transmission of the stored data does not have to be accomplished at the 
same rate as the data is transmitted in real time due to preformatting, precompression, data access, and so 
on. The usual data rate may not be the maximum data rate possible when sending the saved data. Let p be 
the speed-up factor, if any, applied to speed up transmission of saved data during good weather. A value 
of 1 indicates no speed up. A value of less than 1 is actually a slowdown. There is a likely to be a problem 
when the amount of data that can be sent in the good weather at the speed-up rate is insufficient to 
transmit the stored data as shown by the inequality in data size units: 
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 good ( )d dT pR T Rµ ∆ < µ ∆  (31) 

Dividing both sides of the previous equation by (ΔT Rd ), there is likely to be a problem when 

 goodpµ < µ  (32) 

Substituting Equations (13) and (30) into the previous equation results in 

 1
Pr[1,0] Pr[0,1]

p
<  (33) 

Multiplying both sides by Pr[0,1] Pr[1,0] is 

 Pr[0,1] Pr[1,0]p <  (34) 

Therefore, there is a likely problem when p times the probability of good weather given bad weather 
at the previous time step is less than the probability of bad weather given good weather at the previous 
time step. The higher the value of p, the greater the speed up, the less likely for there to be a problem with 
not having enough good weather. 

Furthermore, the good weather may have to outlast the bad on average by enough to send both new 
and old data. The above assumes that sending can be done in parallel with no additional time taken.   

2.5.3 Cyclic Schedule Delays 

There may also be scheduling delays due to other priorities, a daily duty cycle, power constraints, 
heat dissipation, orbital dynamics, and so on. These are not considered here in detail but could add to the 
time before the data can be sent, increasing the buffer size beyond the 3σ value due to weather. For 
example, if the orbit and daily duty cycle are such that the signal can only be scheduled every Y available 
minutes out of every X minutes, it can only send for Y/X of the time and saves data (X – Y)/X of the time, 
regardless of the weather. 

Instead of just the weather, the probabilities would have to reflect both the good weather and the 
availability of both the transmitter and receiver. Since the schedule is usually set up in advance, the 
weather may be considered independent of the schedule. Using the theorem for the joint probability of 
independent events, 

 P(A B) P(A)P(B)∩ =  (35) 

where P(A) is the probability of occurrence of event A, P(B) is the probability of event B, and P(A B)∩  
is the probability of occurrence of both event A and event B at the same time; that is, the intersection of 
the two events, then the probability that the signal can get through is equal to the product of the 
probability that the transmitter and/or receiver is available times the probability that the weather is good. 
Let a = Y/X, the availability ratio. The probability that the transmitter and/or receiver is available is a. The 
probabilities that the weather is good when the transmitter and/or receiver is available are 

 Pr [0,1] Pr[0,1]a′ =  (36) 

and 
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 Pr [1,1] Pr[1,1]a′ =  (37) 

The other equations are computed using those values so that as before 

 1
Pr [0,1]

′µ =
′

  (38) 

and 

 2 ( 1)′ ′σ = µ µ −  (39) 

Since μ′ is inversely proportional to the probability, the buffer size will need to be larger when there 
is less availability for the same weather statistics. 

2.5.4 Multiple Destinations 
There may be buffer sizing improvements as well as timing and schedule improvements, due to 

alternate paths for the signal to travel to multiple destinations. This technique might be used to find a 
destination whose weather allows for successful communication or even possibly an alternate site in space 
so weather is not an immediate problem. The signal might be sent out on all paths at once or to a path that 
is recognized as available and clear. The probability that multiple destinations have bad weather is smaller 
than for any single destination. The buffer size is decreased when any one path can be successful at any 
time and contribute to the whole, consequently stopping the process for the unsuccessful destination. The 
probabilities and buffer size depend on the exact relationships that lead to successful transmission. 

If success depends on the entire signal being received, then the buffer size will usually be determined 
by the location with the better weather for the longest period of time and bad weather for the shortest 
period of time. The buffer size can then be computed for the location with the smallest µ so that 

 1 2min( , )′µ = µ µ  (40) 

Alternately, if success is determined at each time step, the joint probability for multiple destinations is 
used. A joint probability for two locations may be defined as Prʹ[0,1]= probability of clear at either place 
given cloudy or rainy at the previous time step at the same place. Separating the two locations and 
applying a logical distributive law, this may be rewritten in a more computable form as Prʹ[0,1] = 
probability of clear at location 1 given cloudy or rainy at the previous time step at location 1 or clear at 
location 2 given cloudy or rainy at the previous time step at location 2 (refer to definition 2, for Pr[0,1]). 

Using the theorem for the joint probability of independent events, 

 P(A B) P(A) P(B) P(A B)∪ = + − ∩  (41) 

where P(A B)∪  is the probability of the occurrence of either event A or event B at the same time; that is, 
the union of the two events, and assuming that the weather at the two locations are independent, the 
resulting equation is 

 1 2 1 2Pr [0,1] Pr [0,1] Pr [0,1] Pr [0,1]Pr [0,1]′ = + −  (42) 
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Similarly, 

 1 2 1 2Pr [1,1] Pr [1,1] Pr [1,1] Pr [1,1]Pr [1,1]′ = + −  (43) 

For example, if there are two destinations, both with Pr[0,1] 0.5= , then substituting in Equation (42), 
Pr [0,1] 0.5 0.5′ = + – 0.25 = 0.75; that is, the probability of finding a clear location increases from 50 to 75 
percent with a proportional decrease in buffer size required. This computation assumed that what 
happened at each time step was independent of the adjacent time steps; however, that does not have to be 
the case. 

However, if success requires N number of time steps before success or failure can be determined and 
a change can occur, the probability of N clear time steps in a row is 

 1Pr [1,0] Pr[1,1] Pr[1,0]N−′′ =  (44) 

and for two destinations, using Equation (41), 

 1 1 1 11 1 2 2 1 1 2 2Pr [1,0] Pr [1,1] Pr [1,0] Pr [1,1] Pr [1,0] Pr [1,1] Pr [1,0]Pr [1,1] Pr [1,0]N N N N− − − −′′ = + −  (45) 

Then if both locations have the same probabilities; that is, 1 2Pr [1,0] Pr [1,0] Pr[1,0]= =  and 

1 2Pr [1,1] Pr [1,1] Pr[1,1]= = , then 

 1 2 2 2Pr [1,0] 2Pr[1,1] Pr[1,0] Pr[1,1] Pr[1,0]N N− −′′ = −  (46) 

and the ratio of Equation (46) divided by Equation (44) is 

 1ratio 2 Pr[1,1] Pr[1,0]N−= −  (47) 

Then if all the probabilities were 0.5, 2Pr [1,0] 2(0.5) (0.5)N N′′ = − , which is still much improved over 
(0.5)N for the same time period with a single destination. 

Table I shows how quickly the ratio of probabilities approaches 2.0 as the number of time steps 
included in the computation increases. 

 
TABLE I.—MULTIPLE DESTINATION PROBABILITIES 

N One destination 
(Eq. (44)), 

percent 

Two destinations 
(Eq. (46)), 

percent 

Ratio 
(Eq. (47)) 

1 50.00 75.00 1.500 

2 25.00 43.75 1.750 

3 12.50 23.44 1.875 
4 6.25 12.11 1.938 

5 3.13 6.15 1.969 

6 1.56 3.10 1.984 

7 0.78 1.56 1.992 
8 .39 0.78 1.996 

9 .20 .39 1.998 

10 .10 .20 1.999 
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