667 research outputs found

    Simulation and evaluation of freeze-thaw cryoablation scenarios for the treatment of cardiac arrhythmias

    Get PDF
    BACKGROUND: Cardiac cryoablation is a minimally invasive procedure to treat cardiac arrhythmias by cooling cardiac tissues responsible for the cardiac arrhythmia to freezing temperatures. Although cardiac cryoablation offers a gentler treatment than radiofrequency ablation, longer interventions and higher recurrence rates reduce the clinical acceptance of this technique. Computer models of ablation scenarios allow for a closer examination of temperature distributions in the myocardium and evaluation of specific effects of applied freeze-thaw protocols in a controlled environment. METHODS: In this work multiple intervention scenarios with two freeze-thaw cycles were simulated with varying durations and starting times of the interim thawing phase using a finite element model verified by in-vivo measurements and data from literature. To evaluate the effects of different protocols, transmural temperature distributions and iceball dimensions were compared over time. Cryoadhesion durations of the applicator were estimated in the interim thawing phase with varying thawing phase starting times. In addition, the increase of cooling rates was compared between the freezing phases, and the thawing rates of interim thawing phases were analyzed over transmural depth. RESULTS: It could be shown that the increase of cooling rate, the regions undergoing additional phase changes and depths of selected temperatures depend on the chosen ablation protocol. Only small differences of the estimated cryoadhesion duration were found for ablation scenarios with interim thawing phase start after 90 s freezing. CONCLUSIONS: By the presented model a quantification of effects responsible for cell death is possible, allowing for the analysis and optimization of cryoablation scenarios which contribute to a higher clinical acceptance of cardiac cryoablation

    Teaching interdisciplinary sustainability science teamwork skills to graduate students using in-person and web-based interactions

    Get PDF
    Interdisciplinary sustainability science teamwork skills are essential for addressing the world’s most pressing and complex sustainability problems, which inherently have social, natural, and engineering science dimensions. Further, because sustainability science problems exist at global scales, interdisciplinary science teams will need to consist of international members who communicate and work together effectively. Students trained in international interdisciplinary science skills will be able to hit the ground running when they obtain jobs requiring them to tackle sustainability problems. While many universities now have sustainability science programs, few offer courses that are interdisciplinary and international in scope. In the fall semester of 2013, we piloted a course for graduate students entitled “Principles of Interdisciplinary Sustainability Research” at Michigan Technological University. This course was part of our United States National Science Foundation Partnerships in International Research and Education project on bioenergy development impacts across the Americas. In this case study, we describe the course development and implementation, share critical insights from our experience teaching the course and student learning outcomes, and give recommendations for future similar course

    Renal function and cortical blood flow during the recovery phase of acute renal failure

    Get PDF
    Renal function and cortical blood flow during the recovery phase of acute renal failure. The characteristics of the recovery process in dichromate-induced acute renal failure were determined. Rats were studied 1, 4, 7, and 14 days after the s.c. injection of either saline or potassium dichromate. In the sham-injected control animals, all values at each interval were similar. The typical pattern of acute renal failure was seen one day after dichromate injection: glomerular filtration rate (GFR) fell 80%, total renal blood flow (TRBF) was reduced 35%, the proportional flow to the outer cortex was diminished, and the urinary to plasma (U/P) inulin clearance was reduced. The early recovery phase, days 4 and 7, was characterized by: 1) a mild but significant diuresis, 2) progressive improvement in GFR and an increase in the proportional flow to the outer cortex, which actually exceeded control values, 3) a dissociation between improvement in renal function and changes in TRBF, since GFR increased progressively while TRBF remained relatively fixed, and 4) improvement in GFR that was associated with a progressive and parallel increase in absolute perfusion of the outer cortex. The present data suggest that the recovery process occurs in two stages. In the first stage, the restoration of outer cortical perfusion and renal function precedes the recovery of TRBF and tubular function, which occur during the second stage of the recovery process.Fonction rénale et débit sanguin rénal cortical au cours de la période de récupération de l'insuffisance rénale aiguë. Les caractéristiques du processus de récupération après une insuffisance rénale aiguë induite par le dichromate, ont été déterminées. Des rats ont été étudiés 1, 4, 7, et l4 jours après l'injection s.c. de dichromate de potassium ou de soluté salé. Chez les animaux contrôles, toutes les valeurs obtenues sont semblables. L'aspect typique de l'insuffisance rénale aiguë est observée un jour après l'injection de dichromate: GFR diminue de 80%, le débit sanquin rénal (TRBF) est réduit de 35%, la fraction de ce débit délivrée au cortex superficiel diminue et le U/P de l'inuline est abaissé. La phase de récupération précoce, aux jours 4 et 7, est caractérisée par: 1) une diurèse peu importante mais significativement plus grande, 2) une amélioration progressive de GFR et une augmentation de la fraction du débit délivrée au cortex superficiel, qui devient supérieure aux valeurs contrôles, 3) une dissociation entre l'amélioration de la fonction rénale indiquée par l'augmentation progressive de GFR, et TRBF qui reste relativement bas, 4) et une amélioration de GFR qui est associée à une augmentation progressive et parallèle du débit absolu de perfusion du cortex superficiel. Ces résultats suggèrent que le processus de récuparation survient en deux étapes. A la première étape, la récupération du débit cortical superficiel et de la fonction rénale précède la récupération de TRBF et de la fonction tubulaire qui constitue la deuxième étape

    Optimizing excitation coil currents for advanced magnetorelaxometry imaging

    Get PDF
    Magnetorelaxometry imaging is a highly sensitive technique enabling noninvasive, quantitative detection of magnetic nanoparticles. Electromagnetic coils are sequentially energized, aligning the nanoparticles’ magnetic moments. Relaxation signals are recorded after turning off the coils. The forward model describing this measurement process is reformulated into a severely ill-posed inverse problem that is solved for estimating the particle distribution. Typically, many activation sequences employing different magnetic fields are required to obtain reasonable imaging quality. We seek to improve the imaging quality and accelerate the imaging process using fewer activation sequences by optimizing the applied magnetic fields. Minimizing the Frobenius condition number of the system matrix, we stabilize the inverse problem solution toward model uncertainties and measurement noise. Furthermore, our sensitivity-weighted reconstruction algorithms improve imaging quality in lowly sensitive areas. The optimization approach is employed to real measurement data and yields improved reconstructions with fewer activation sequences compared to non-optimized measurements
    • …
    corecore