3,878 research outputs found
Quantum Fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of External Electric Field
Fluctuations of the electromagnetic field produced by quantized matter in
external electric field are investigated. A general expression for the power
spectrum of fluctuations is derived within the long-range expansion. It is
found that in the whole measured frequency band, the power spectrum of
fluctuations exhibits an inverse frequency dependence. A general argument is
given showing that for all practically relevant values of the electric field,
the power spectrum of induced fluctuations is proportional to the field
strength squared. As an illustration, the power spectrum is calculated
explicitly using the kinetic model with the relaxation-type collision term.
Finally, it is shown that the magnitude of fluctuations produced by a sample
generally has a Gaussian distribution around its mean value, and its dependence
on the sample geometry is determined. In particular, it is demonstrated that
for geometrically similar samples, the power spectrum is inversely proportional
to the sample volume. Application of the obtained results to the problem of
flicker noise is discussed.Comment: 14 pages, 3 figure
On the exchange of intersection and supremum of sigma-fields in filtering theory
We construct a stationary Markov process with trivial tail sigma-field and a
nondegenerate observation process such that the corresponding nonlinear
filtering process is not uniquely ergodic. This settles in the negative a
conjecture of the author in the ergodic theory of nonlinear filters arising
from an erroneous proof in the classic paper of H. Kunita (1971), wherein an
exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page
A discrete invitation to quantum filtering and feedback control
The engineering and control of devices at the quantum-mechanical level--such
as those consisting of small numbers of atoms and photons--is a delicate
business. The fundamental uncertainty that is inherently present at this scale
manifests itself in the unavoidable presence of noise, making this a novel
field of application for stochastic estimation and control theory. In this
expository paper we demonstrate estimation and feedback control of quantum
mechanical systems in what is essentially a noncommutative version of the
binomial model that is popular in mathematical finance. The model is extremely
rich and allows a full development of the theory, while remaining completely
within the setting of finite-dimensional Hilbert spaces (thus avoiding the
technical complications of the continuous theory). We introduce discretized
models of an atom in interaction with the electromagnetic field, obtain
filtering equations for photon counting and homodyne detection, and solve a
stochastic control problem using dynamic programming and Lyapunov function
methods.Comment: 76 pages, 12 figures. A PDF file with high resolution figures can be
found at http://minty.caltech.edu/papers.ph
Periodic orbits of period 3 in the disc
Let f be an orientation preserving homeomorphism of the disc D2 which
possesses a periodic point of period 3. Then either f is isotopic, relative the
periodic orbit, to a homeomorphism g which is conjugate to a rotation by 2 pi
/3 or 4 pi /3, or f has a periodic point of least period n for each n in N*.Comment: 7 page
Langevin Thermostat for Rigid Body Dynamics
We present a new method for isothermal rigid body simulations using the
quaternion representation and Langevin dynamics. It can be combined with the
traditional Langevin or gradient (Brownian) dynamics for the translational
degrees of freedom to correctly sample the NVT distribution in a simulation of
rigid molecules. We propose simple, quasi-symplectic second-order numerical
integrators and test their performance on the TIP4P model of water. We also
investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl
Molecular epidemiology of Mycobacterium bovis in Cameroon
We describe the largest molecular epidemiological study of Bovine Tuberculosis (bTB) in a sub-Saharan African country with higher spatial resolution providing new insights into bTB. Four hundred and ninety-nine samples were collected for culture from 201 and 179 cattle with and without bTB-like lesions respectively out of 2,346 cattle slaughtered at Bamenda, Ngaoundere, Garoua and Maroua abattoirs between 2012-2013. Two hundred and fifty-five M. bovis were isolated, identified and genotyped using deletion analysis, Hain® Genotype MTBC, spoligotyping and MIRU-VNTR. African 1 was the dominant M. bovis clonal complex, with 97 unique genotypes including 19 novel spoligotypes representing the highest M. bovis genetic diversity observed in Africa to date. SB0944 and SB0953 dominated (63%) the observed spoligotypes. A third of animals with multiple lesions had multiple strain infections. Higher diversity but little evidence of recent transmission of M. bovis was more common in Adamawa compared to the North-West Region. The Adamawa was characterised by a high frequency of singletons possibly due to constant additions from an active livestock movement network compared to the North-West Region where a local expansion was more evident. The latter combined with population-based inferences suggest an unstable and stable bTB-endemic status in the North-West and Adamawa Regions respectively
A Classification of Minimal Sets of Torus Homeomorphisms
We provide a classification of minimal sets of homeomorphisms of the
two-torus, in terms of the structure of their complement. We show that this
structure is exactly one of the following types: (1) a disjoint union of
topological disks, or (2) a disjoint union of essential annuli and topological
disks, or (3) a disjoint union of one doubly essential component and bounded
topological disks. Periodic bounded disks can only occur in type 3. This result
provides a framework for more detailed investigations, and additional
information on the torus homeomorphism allows to draw further conclusions. In
the non-wandering case, the classification can be significantly strengthened
and we obtain that a minimal set other than the whole torus is either a
periodic orbit, or the orbit of a periodic circloid, or the extension of a
Cantor set. Further special cases are given by torus homeomorphisms homotopic
to an Anosov, in which types 1 and 2 cannot occur, and the same holds for
homeomorphisms homotopic to the identity with a rotation set which has
non-empty interior. If a non-wandering torus homeomorphism has a unique and
totally irrational rotation vector, then any minimal set other than the whole
torus has to be the extension of a Cantor set.Comment: Published in Mathematische Zeitschrift, June 2013, Volume 274, Issue
1-2, pp 405-42
- …
