The engineering and control of devices at the quantum-mechanical level--such
as those consisting of small numbers of atoms and photons--is a delicate
business. The fundamental uncertainty that is inherently present at this scale
manifests itself in the unavoidable presence of noise, making this a novel
field of application for stochastic estimation and control theory. In this
expository paper we demonstrate estimation and feedback control of quantum
mechanical systems in what is essentially a noncommutative version of the
binomial model that is popular in mathematical finance. The model is extremely
rich and allows a full development of the theory, while remaining completely
within the setting of finite-dimensional Hilbert spaces (thus avoiding the
technical complications of the continuous theory). We introduce discretized
models of an atom in interaction with the electromagnetic field, obtain
filtering equations for photon counting and homodyne detection, and solve a
stochastic control problem using dynamic programming and Lyapunov function
methods.Comment: 76 pages, 12 figures. A PDF file with high resolution figures can be
found at http://minty.caltech.edu/papers.ph