16 research outputs found

    ICESat (GLAS) Science Processing Software Document Series

    Get PDF
    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status

    Topography Experiment (TOPEX) Software Document Series Volume 7: TOPEX Mission Radar Altimeter Engineering Assessment Report, February 1994

    Get PDF
    This document describes the GSFC/WFF analysis of the on-orbit engineering data from the TOPEX radar altimeter, to establish altimeter performance. In accordance with Project guidelines, neither surface truth nor precision orbital data are used for the engineering assessment of the altimeter. The use of such data would imply not only a more intensive and complete performance evaluation, but also a calibration. Such evaluations and.calibrations are outside the scope of this document and will be presented in a separate Verification Report

    The Algorithm Theoretical Basis Document for Level 1A Processing

    Get PDF
    The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document

    TOPEX Radar Altimeter Engineering Assessment Report Final Update-Side B Turn-On to End-of-Mission on October 9, 2005

    Get PDF
    This is the thirteenth and final report in a series of TOPEX Radar Altimeter Engineering Assessment Reports. The initial TOPEX Radar Altimeter Engineering Assessment Report, in February 1994, presented performance results for the NASA Radar Altimeter on the TOPEX/POSEIDON spacecraft, from its launch in August 1992 to February 1994. Since the time of that initial report and prior to this report, there have been eleven interim supplemental Engineering Assessment Reports, issued in March 1995, May 1996, March 1997, June 1998, August 1999, September 2000, June 2001, March 2002, May 2003, April 2004 and September 2005. The sixth supplement in September 2000 was the first assessment report that addressed Side B performance, and presented the altimeter performance from Side B turn-on until the end of calendar year 1999. This report extends the performance assessment of Side B to the final collection of data on October 9, 2005, and includes the performance assessment of Jason-1, the TOPEX follow-on mission, launched on December 7, 2001. This report provides some comparisons of Side A and Side B performance

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    TOPEX Radar Altimeter Engineering Assessment Report Update: Side B Turn-On to January 1, 2004

    No full text
    This is the eleventh in a series of TOPEX Radar Engineering Assessment Reports, The initial TOPEX Radar Altimeter Engineering Assessment Report, in February 1994, presented performance results for the NASA Radar Altimeter on the TOPEX/POSEIDON spacecraft, from the time of its launch in August 1992 to February 1994. Since the time of that initial report and prior to this report, there have been nine interim supplemental Engineering Assessment Reports, issued in March 1995, May 1996, March 1997, June 1998, August 1999, September 2000, June 2001, March 2002 and again in May 2003.The sixth supplement in September 2000 was the first assessment report that addressed Side B performance, and presented the altimeter performance from the turn-on of Side B until the end of calendar year 1999. This report extends the performance assessment of Side B to the end of calendar year 2003 and includes the performance assessment of Jason-1, the TOPEX follow-on mission, launched on December 7, 2001

    GEOSAT Follow-on (GFO) Altimeter Document Series

    No full text
    The U.S. Navy's Geosat Follow-On (GFO) Mission, launched on February 20, 1998, is one of a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by NASA's GSFC and Wallops altimeter, calibration team. It is the second of an anticipated series of NASA's GSFC and Wallops GFO performance documents, each of which will update assessment results. This report covers the performance from instrument acceptance by the Navy on November 29, 2000, to the end of Cycle 20 on November 21, 2001. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO

    The HF Dimer: Potential Energy Surface and Dynamical Processes

    No full text
    corecore