239 research outputs found

    Stabilization diagrams to distinguish physical modes and spurious modes for structural parameter identification

    Get PDF
    A novel clustering stabilization diagram combined with self adaptive differential evolution algorithm is proposed to identify the modal parameters of civil engineering structures. Compared with the traditional stabilization diagram, the clustering diagram has drawn more attention because it can distinguish physical and spurious modes due to its automatic performance. In this paper, a self adaptive differential evolution algorithm is proposed to optimize the initial clustering centers so as to improve the clustering stabilization diagram. Moreover, this paper presents a new idea that the modal assurance criterion (MAC) composed of mode shapes is selected as the Y-axis to replace the model orders or damping ratios in existing stabilization diagrams. The results of a benchmark test of bridge Z24 and the numerical simulation of a continuous beam and a cable-stayed bridge demonstrate the advantages of the proposed approaches and the reliability of detecting the modal parameters

    DHX33 transcriptionally controls genes involved in the cell cycle

    Get PDF
    The RNA helicase DHX33 has been shown to be a critical regulator of cell proliferation and growth. However, the underlying mechanisms behind DHX33 function remain incompletely understood. We present original evidence in multiple cell lines that DHX33 transcriptionally controls the expression of genes involved in the cell cycle, notably cyclin, E2F1, cell division cycle (CDC), and minichromosome maintenance (MCM) genes. DHX33 physically associates with the promoters of these genes and controls the loading of active RNA polymerase II onto these promoters. DHX33 deficiency abrogates cell cycle progression and DNA replication and leads to cell apoptosis. In zebrafish, CRISPR-mediated knockout of DHX33 results in downregulation of cyclin A2, cyclin B2, cyclin D1, cyclin E2, cdc6, cdc20, E2F1, and MCM complexes in DHX33 knockout embryos. Additionally, we found the overexpression of DHX33 in a subset of non-small-cell lung cancers and in Ras-mutated human lung cancer cell lines. Forced reduction of DHX33 in these cancer cells abolished tumor formation in vivo. Our study demonstrates for the first time that DHX33 acts as a direct transcriptional regulator to promote cell cycle progression and plays an important role in driving cell proliferation during both embryo development and tumorigenesis

    Generalized Estimating Equations for Hearing Loss Data with Specified Correlation Structures

    Full text link
    Due to the nature of pure-tone audiometry test, hearing loss data often has a complicated correlation structure. Generalized estimating equation (GEE) is commonly used to investigate the association between exposures and hearing loss, because it is robust to misspecification of the correlation matrix. However, this robustness typically entails a moderate loss of estimation efficiency in finite samples. This paper proposes to model the correlation coefficients and use second-order generalized estimating equations to estimate the correlation parameters. In simulation studies, we assessed the finite sample performance of our proposed method and compared it with other methods, such as GEE with independent, exchangeable and unstructured correlation structures. Our method achieves an efficiency gain which is larger for the coefficients of the covariates corresponding to the within-cluster variation (e.g., ear-level covariates) than the coefficients of cluster-level covariates. The efficiency gain is also more pronounced when the within-cluster correlations are moderate to strong, or when comparing to GEE with an unstructured correlation structure. As a real-world example, we applied the proposed method to data from the Audiology Assessment Arm of the Conservation of Hearing Study, and studied the association between a dietary adherence score and hearing loss.Comment: 14 pages, 5 tables, 4 supplementary tables; submitted to Biometrical Journa

    LZAP, a Putative Tumor Suppressor, Selectively Inhibits NF-κB

    Get PDF
    LZAP has been reported to inhibit cellular proliferation and clonogenic growth. Here, we report that decreased LZAP expression promoted cellular transformation, xenograft tumor growth, and xenograft tumor vascularity. Loss of LZAP also increased cellular invasion, and MMP-9 expression dependent on NF-kappaB. LZAP directly bound to RelA, impaired serine 536 phosphorylation of RelA, increased HDAC association with RelA, inhibited basal and stimulated NF-kappaB transcriptional activity, and was found at the promoter of selective NF-kappaB-responsive genes. LZAP protein levels were markedly decreased in 32% of primary HNSCCs (n = 28) and decreased LZAP levels in primary HNSCC correlated with increased expression of the NF-kappaB-regulated genes IL-8 and IkappaBalpha. In aggregate, these data support a role of LZAP in NF-kappaB regulation and tumor suppression

    Damage identification for irregular-shaped bridge based on fuzzy C-means clustering improved by particle swarm optimization algorithm

    Get PDF
    Irregular-shaped bridge is an important component of urban overpass and is prone to damage due to severe overloading and material deterioration. Structural damage detection is necessary to prevent bridge failure and guarantee the safe operation of urban traffic. For vibration-based damage detection methods, mode shape of full-scale structure is difficult to be measured with the limited number of sensors, while modal frequency can be obtained accurately and conveniently. This paper aims to propose a two-stage scheme for damage identification using the ratios of modal frequency changes and uniform load surface curvature difference (ULSCD) in damage region. FCM algorithm improved by PSO algorithm (FCM-PSO) is employed to locate damage and predict the damage extent. Firstly, the ratios of modal frequency changes from training cases are classified into several clusters based on FCM-PSO analysis. And the cluster centers for damage locations are constructed. Damage location can be identified by calculating the fuzzy memberships between identification indicator vector and cluster centers of damage locations. After obtaining the damage location, ULSCD values in damage region are established to assess damage severity based on the memberships in damage grades. Damage identification results for typical irregular-shaped bridge demonstrate that the two-stage damage identification method is efficient and accurate to identify the occurrence, location and extent of structural damag

    A finite control set model predictive control method for matrix converter with zero common-mode voltage

    Get PDF
    In this paper a finite control set model predictive control method is presented that eliminates the common-mode voltage at the output of a matrix converter. In the predictive control process only the rotating vectors are selected to generate the output voltage and the input current in order to remove the common mode voltage. In addition, a modified four-step commutation strategy is proposed to eliminate common-mode voltage spikes caused by the conventional four-step commutation strategy based on the current direction. The proposed method reduces the computational complexity greatly compared with the enhanced space vector modulation with rotating vectors. The feasibility and operation of the proposed method are verified using experimental results. The resulting common-mode voltage is near to zero with good quality input and output converter waveforms

    A single-phase bidirectional AC/DC converter for V2G applications

    Get PDF
    This paper presents a single-phase bidirectional current-source AC/DC converter for vehicle to grid (V2G) applications. The presented converter consists of a line frequency commutated unfolding bridge and an interleaved buck-boost stage. The low semiconductor losses of the line frequency commutated unfolding bridge contribute to the comparatively good efficiency of this converter. The buck and boost operating modes of the interleaved buck-boost stage provide operation over a wide battery voltage range. The interleaved structure of the interleaved buck-boost stage results in lower battery current ripple. In addition, sinusoidal input current, bidirectional power flow and reactive power compensation capability are also guaranteed. This paper presents the topology and operating principles of the presented converter. The feasibility of the converter is validated using MATLAB simulations, as well as experimental results

    Investigation of the effect of water content and degree of compaction on the shear strength of clay soil material

    No full text
    The effect of water on compacted clay material with the use of triaxial compression was studied, and models for predicting shear strength parameters were also developed. The results show that cohesion decreases exponentially with increasing water content and exponentially increases with increasing degree of compaction. The angle of internal friction decreases in a convex quadratic parabolic law with increasing water content and increases with a concave quadratic parabolic law with an increase in the degree of compaction; Cohesion and internal friction angle are two-dimensional quadratic functions of water content and degree of compaction and have relatively large values of the shear strength parameter
    corecore