452 research outputs found

    Phase diagram and critical properties in the Polyakov--Nambu--Jona-Lasinio model

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.Comment: Talk given at the 9th International Conference on Quark Confinement and the Hadron Spectrum - QCHS IX, Madrid, Spain, 30 August - September 201

    Analysis of the exciton-exciton interaction in semiconductor quantum wells

    Full text link
    The exciton-exciton interaction is investigated for quasi-two-dimensional quantum structures. A bosonization scheme is applied including the full spin structure. For generating the effective interaction potentials, the Hartree-Fock and Heitler-London approaches are improved by a full two-exciton calculation which includes the van der Waals effect. With these potentials the biexciton formation in bilayer systems is investigated. For coupled quantum wells the two-body scattering matrix is calculated and employed to give a modified relation between exciton density and blue shift. Such a relation is of central importance for gauging exciton densities in experiments which pave the way toward Bose-Einstein condensation of excitons

    Semiconductor-cavity QED in high-Q regimes: Detuning effect

    Full text link
    The non-resonant interaction between the high-density excitons in a quantum well and a single mode cavity field is investigated. An analytical expression for the physical spectrum of the excitons is obtained. The spectral properties of the excitons, which are initially prepared in the number states or the superposed states of the two different number states by the resonant femtosecond pulse pumping experiment, are studied. Numerical study of the physical spectrum is carried out and a discussion of the detuning effect is presented.Comment: 7 pages, 8 figure

    Dimensionality dependence of optical nonlinearity and relaxation dynamics in cuprates

    Full text link
    Femtosecond pump-probe measurements find pronounced dimensionality dependence of the optical nonlinearity in cuprates. Although the coherent two-photon absorption (TPA) and linear absorption bands nearly overlap in both quasi-one and two-dimensional (1D and 2D) cuprates, the TPA coefficient is one order of magnitude smaller in 2D than in 1D. Furthermore, picosecond recovery of optical transparency is observed in 1D cuprates, while the recovery in 2D involves relaxation channels with a time scales of tens of picoseconds. The experimental results are interpreted within the two-band extended Hubbard model.Comment: 10 pages, 4 figure

    Traces of stimulated bosonic exciton-scattering in semiconductor luminescence

    Full text link
    We observe signatures of stimulated bosonic scattering of excitons, a precursor of Bose-Einstein-Condensation (BEC), in the photoluminescence of semiconductor quantum wells. The optical decay of a spinless molecule of two excitons (biexciton) into an exciton and a photon with opposite angular momenta is subject to bosonic enhancement in the presence of other excitons. In a spin polarized gas of excitons the bosonic enhancement breaks the symmetry of two equivalent decay channels leading to circularly polarized luminescence of the biexciton with the sign opposite to the excitonic luminescence. Comparison of experiment and many body theory proves stimulated scattering of excitons, but excludes the presence of a fully condensed BEC-like state.Comment: 5 page

    A Cooper pair light emitting diode

    Get PDF
    We demonstrate Cooper-pair's drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.Comment: 5 pages (4 figures

    Nonlinear optical spectroscopy of single, few, and many molecules; nonequilibrium Green's function QED approach

    Full text link
    Nonlinear optical signals from an assembly of N noninteracting particles consist of an incoherent and a coherent component, whose magnitudes scale \sim N and \sim N(N-1), respectively. A unified microscopic description of both types of signals is developed using a quantum electrodynamical (QED) treatment of the optical fields. Closed nonequilibrium Green's function expressions are derived that incorporate both stimulated and spontaneous processes. General (n+1)-wave mixing experiments are discussed as an example of spontaneously generated signals. When performed on a single particle, such signals cannot be expressed in terms of the nth order polarization, as predicted by the semiclassical theory. Stimulated processes are shown to be purely incoherent in nature. Within the QED framework, heterodyne-detected wave mixing signals are simply viewed as incoherent stimulated emission, whereas homodyne signals are generated by coherent spontaneous emission.Comment: article: 33 pages (preprint format!) ''paper.tex'' figures: 17 figures (.eps) in folder ``figures'

    Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Get PDF
    This work was supported through the Leading Graduate School Program: Academy for Co-creative Education of Environment and Energy Science (ACEEES) funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan).Growth of finely dispersed nanocatalysts by exsolution of metal nanoparticles from perovskite oxides under reducing conditions at elevated temperature is a promising approach of producing highly active catalytic materials. An alternative method of exsolution using an applied potential has been recently shown to potentially accelerate the exsolution process of nanoparticles that can be achieved in minutes rather than the hours required in chemical reduction. In the present study, we investigate exsolution of nanoparticles from perovskite oxides of La0.43Ca0.37Ni0.06Ti0.94O3-γ (LCTNi) and La0.43Ca0.37Ni0.03Fe0.03Ti0.94O3-γ (LCTNi-Fe) under applied potentials in carbon dioxide atmosphere. The impedance spectra of single cells measured before and after electrochemical poling at varying voltages showed that the onset of exsolution process occurred at 2 V of potential reduction. An average particle size of the exsolved nanoparticles observed after testing using a scanning electron microscopy was about 30–100 nm. The cells with the reduced electrodes exhibited desirable electrochemical performances not only in pure carbon dioxide (current density of 0.37 A cm−2 for LCTNi and 0.48 A cm−2 for LCTNi-Fe at 1.5 V) but also in dry hydrogen (0.36 W cm−2 for LCTNi and 0.43 W cm−2 for LCTNi-Fe).PostprintPeer reviewe

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure

    Effective Hamiltonian for Excitons with Spin Degrees of Freedom

    Full text link
    Starting from the conventional electron-hole Hamiltonian Heh{\cal H}_{eh}, we derive an effective Hamiltonian H~1s\tilde{\cal H}_{1s} for 1s1s excitons with spin degrees of freedom. The Hamiltonian describes optical processes close to the exciton resonance for the case of weak excitation. We show that straightforward bosonization of Heh{\cal H}_{eh} does not give the correct form of H~1s\tilde{\cal H}_{1s}, which we obtain by a projection onto the subspace spanned by the 1s1s excitons. The resulting relaxation and renormalization terms generate an interaction between excitons with opposite spin. Moreover, exciton-exciton repulsive interaction is greatly reduced by the renormalization. The agreement of the present theory with the experiment supports the validity of the description of a fermionic system by bosonic fields in two dimensions.Comment: 12 pages, no figures, RevTe
    corecore