19 research outputs found

    Eotaxins and CCR3 Interaction Regulates the Th2 Environment of Cutaneous T-Cell Lymphoma

    Get PDF
    CC chemokine receptor 3 (CCR3), the sole receptor for eotaxins, is expressed on eosinophils and T helper type 2 (Th2) cells. In Hodgkin’s disease, eotaxin-1 secreted by fibroblasts collects Th2 cells and eosinophils within the tissue. Similarly, many Th2 cells infiltrate the lesional skin of cutaneous T-cell lymphoma (CTCL). In this study, we investigated the role of eotaxins in the development of the Th2 environment of CTCL. We revealed that fibroblasts from lesional skin of CTCL expressed higher amounts of eotaxin-3 messenger RNA (mRNA) compared with those from normal skin. Lesional skin of CTCL at advanced stages contained significantly higher levels of eotaxin-3 and CCR3 mRNA, compared with early stages of CTCL. IL-4 mRNA was expressed in some cases at advanced stages. Immunohistochemistry revealed that keratinocytes, endothelial cells, and dermal fibroblasts in lesional skin of CTCL showed a stronger expression of eotaxin-3 than did normal skin. CCR3+ lymphocytes and IL-4 expression were observed in some cases of advanced CTCL. Furthermore, both serum eotaxin-3 and eotaxin-1 levels of CTCL patients at advanced stages were significantly higher than those of healthy individuals. The concentrations of these chemokines correlated with serum soluble IL-2 receptor levels. These results suggest that interaction of eotaxins and CCR3 regulates the Th2-dominant tumor environment, which is closely related to the development of CTCL

    Lymphatic Dysfunction Impairs Antigen-Specific Immunization, but Augments Tissue Swelling Following Contact with Allergens

    Get PDF
    The lymph transports tissue-resident dendritic cells (DCs) to regional lymph nodes (LNs), having important roles in immune function. The biological effects on tissue inflammation following lymphatic flow obstruction in vivo, however, are not fully known. In this study, we investigated the role of the lymphatic system in contact hypersensitivity (CHS) responses using k-cyclin transgenic (kCYC+/-) mice, which demonstrate severe lymphatic dysfunction. kCYC+/- mice showed enhanced ear swelling to both DNFB and FITC, as well as stronger irritant responses to croton oil compared with wild-type littermates. Consistently, challenged ears of kCYC+/- mice exhibited massive infiltrates of inflammatory cells. In contrast, DC migration to regional LNs, drainage of cell-free antigen to LNs, antigen-specific IFN-γ production, and lymphocyte proliferation were impaired during the sensitization phase of CHS in kCYC+/- mice. Transfer experiments using lymphocytes from sensitized mice and real-time PCR analysis of cytokine expression using challenged ear revealed that ear swelling was enhanced because of impaired lymphatic flow. Collectively, we conclude that insufficient lymphatic drainage augments apparent inflammation to topically applied allergens and irritants. The findings add insight into the clinical problem of allergic and irritant contact dermatitis that commonly occurs in humans with peripheral edema of the lower legs

    Rapidly Progressive Multiple Skin Plaques and Nodules: A Quiz

    No full text
    Abstract is missing (Quiz
    corecore