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The lymph transports tissue-resident dendritic cells (DCs) to regional lymph nodes (LNs), having important
roles in immune function. The biological effects on tissue inflammation following lymphatic flow obstruction
in vivo, however, are not fully known. In this study, we investigated the role of the lymphatic system in contact
hypersensitivity (CHS) responses using k-cyclin transgenic (kCYCþ /�) mice, which demonstrate severe
lymphatic dysfunction. kCYCþ /� mice showed enhanced ear swelling to both DNFB and FITC, as well as
stronger irritant responses to croton oil compared with wild-type littermates. Consistently, challenged ears of
kCYCþ /� mice exhibited massive infiltrates of inflammatory cells. In contrast, DC migration to regional LNs,
drainage of cell-free antigen to LNs, antigen-specific IFN-g production, and lymphocyte proliferation were
impaired during the sensitization phase of CHS in kCYCþ /�mice. Transfer experiments using lymphocytes from
sensitized mice and real-time PCR analysis of cytokine expression using challenged ear revealed that ear
swelling was enhanced because of impaired lymphatic flow. Collectively, we conclude that insufficient
lymphatic drainage augments apparent inflammation to topically applied allergens and irritants. The findings
add insight into the clinical problem of allergic and irritant contact dermatitis that commonly occurs in humans
with peripheral edema of the lower legs.
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INTRODUCTION
Lymphedema is a condition caused by damaged lymphatics
resulting in accumulation of lymph fluid and tissue swelling.
It is common in the legs of older individuals and in the arms
of women following breast cancer surgery. Lymphedema
is associated with a number of complications, including
infections with bacteria and fungi. In rare cases, lymphedema
may be complicated by the development of angiosarcoma
(Stewart and Treves, 1948; Ruocco et al., 2001), squamous
cell carcinoma (Epstein and Mendelsohn, 1984; Furukawa
et al., 2002), and lymphoma (d’Amore et al., 1990; Dargent
et al., 2005). These phenomena may be due to reduced tissue
immune surveillance secondary to lymphatic dysfunction.

Indeed, lymphatic vessels are critical for transporting
tissue-resident dendritic cells (DCs), as well as interstitial
fluid to the lymph nodes (LNs), having important roles in
immunity against infectious agents and malignancy (Kaplan
et al., 2005). Thus far, very little is known about how immune
cells traffic and how immune responses may be altered in the
setting of lymphatic dysfunction.

Contact hypersensitivity (CHS) is an experimental model
for the study of antigen-specific, T-cell-mediated immune
responses (Macher and Chase, 1969). CHS responses
comprise: (1) a sensitization phase, when an antigen is first
presented to naive T cells in the regional LNs, and (2) an
elicitation phase, when antigen-specific memory T cells get
activated and release cytokines that attract other inflamma-
tory cells to the exposed site, dilate cutaneous blood vessels,
and cause dermal edema (Hopkins and Clark, 1995). It is
widely accepted that antigen-presenting cells migrate to LNs
and present antigens to naive T cells in the sensitization
phase. It is unknown how lymphatic dysfunction affects
CHS responses.

Specific markers for lymphatic endothelium have been
reported, such as vascular endothelial growth factor receptor-
3 (VEGFR-3) (Jussila et al., 1998; Dupin et al., 1999),
podoplanin (Breiteneder-Geleff et al., 1999), and lymphatic
vessel endothelial hyaluronan receptor-1 (Hong et al., 2004).
Specific identification of lymphatic endothelial cells had led
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to a variety of important studies on structure and function of
lymphatic vessels in both normal and disease states. We
recently generated transgenic mice expressing the Kaposi’s
sarcoma-associated herpesvirus latent-cycle gene, k-cyclin,
under the control of the VEGFR-3 promoter (Sugaya et al.,
2005). In Kaposi’s sarcoma, this viral gene is expressed
by lymphatic endothelial cells and probably contributes to
edema within lesions (Davis et al., 1997; Reed et al., 1998).
Interestingly, most k-cyclin transgenic (kCYCþ /�) mice
developed progressive accumulation of chylous pleural fluid.
In skin, dermal edema was detected by magnetic resonance
imaging (Sugaya et al., 2005). In addition, lymphatic drainage
of injected contrast dyes was markedly impaired in transgenic
mice. Using these mice, we investigated the role of the
lymphatic system in CHS responses in this study.

RESULTS
Augmented ear swelling in kCYCþ /� mice

We first investigated whether CHS responses were impaired
in kCYCþ /� mice, which demonstrate markedly impaired
lymphatic drainage (Sugaya et al., 2005). When the mice
were sensitized with 0.5 or 0.1% DNFB, ear swelling
was significantly augmented in kCYCþ /� mice compared
with wild-type (WT) mice (Figure 1a and b). Similar results
were obtained when we used FITC (Figure 1c), showing that
different antigens could induce augmented ear swelling in
kCYCþ /� mice. Nonimmunized mice and FITC-challenged
mice that had been sensitized with DNFB did not show CHS
responses (Figure 1a and data not shown).

Enhanced cellular infiltration in the challenged ear of
kCYCþ /� mice

We also evaluated CHS responses histopathologically. There
were no differences between ears from kCYCþ /� mice and
WT mice before treatment (Figure 1d). Ear swelling and
cellular infiltration 24 hours after challenge with either DNFB
(Figure 1d) or FITC (data not shown) were prominent in
kCYCþ /� mice compared with WT mice. Edema and dilated
vessels in the ear from kCYCþ /� mice suggested impaired
lymphatic flow in these mice. There were more infiltrating
cells, such as mononuclear cells, eosinophils, and major
histocompatibility complex (MHC) class IIþ DCs in kCYCþ /�

mice compared with WT mice (Figure 1e).

Impaired migration of skin-derived DCs into draining LNs
of kCYCþ /� mice during the sensitization phase of CHS

To elucidate the mechanism of augmented ear swelling
in kCYCþ /� mice, each step involved in the generation
of CHS responses was examined. We first studied migration
of antigen-bearing DCs from skin to regional LNs. Untreated
epidermal sheets contained equal numbers of DCs (WT,
752±24/mm2 vs. kCYCþ /�, 806±43/mm2, n¼ 5). The
shape and distribution of epidermal DCs (Langerhans cells)
were similar in WT and kCYCþ /� mice (Figure 2a). To count
draining DCs in LNs, inguinal LN cells were harvested 24 or
48 hours after applying 0.5% FITC on shaved abdominal skin.
Inguinal LN cells from untreated mice were also obtained.
After applying FITC, the number of DCs and antigen-bearing

DCs in draining LNs in WT mice increased, as expected
(Figure 2b and c). In contrast, migration of antigen-bearing
DCs in kCYCþ /� mice was almost completely abrogated.
Similar results were obtained when DCs were labeled by
anti-CD11c mAb (data not shown). The results suggest that
DCs cannot migrate from the skin to draining LNs when
lymphatic flow is impaired. We detected almost no antigen-
bearing DCs in the spleen after sensitization in both WT and
kCYCþ /� mice (data not shown). Interestingly, the numbers
of DCs in kCYCþ /� mice were significantly decreased
compared with WT mice without stimuli (Figure 2c), which
suggests that lymphatic dysfunction in kCYCþ /� mice may
decrease the steady-state migration of DCs (Ruedl et al.,
2000; Henri et al., 2001; Ohl et al., 2004).

Impaired proliferation of lymphocytes in draining LNs of
kCYCþ /� mice during the sensitization phase of CHS

We next examined the proliferation of lymphocytes in
draining LNs. There were almost no gross and histological
differences in the thymus, spleen, and peripheral LNs
between WT and kCYCþ /� mice without any stimulus
(Sugaya et al., 2005). Inguinal LNs were harvested before
and after sensitization with 0.5% DNFB. The total numbers of
draining LN cells increased after sensitization in both WT and
kCYCþ /� mice, although the increase was less remarkable
in the latter (Figure 3a). The numbers of CD4þ T cells, CD8þ

T cells, and B cells were also examined. Each cell type
increased in number following sensitization in both types of
mice (Figure 3a). Increases, however, were less remarkable in
kCYCþ /� mice when compared with WT mice, especially for
CD8þ T cells and B cells. We next examined correlations
between frequencies of DCs and those of CD4þ T cells,
CD8þ T cells, and B cells in the draining LNs. As expected,
frequencies of DCs strongly correlated with those of CD8þ

T cells and B cells (Figure 3b), both of which are reported
to be involved in CHS responses (Kehren et al., 1999; Wang
et al., 2000; Larsen et al., 2007; Watanabe et al., 2007).
On the other hand, frequencies of CD4þ T cells negatively
correlated with those of DCs, which might reflect the relative
increase of other cell populations. Interestingly, MHC class II
expression on B cells significantly correlated with the
numbers of B cells in draining LNs, suggesting activation
of B cells in the draining LNs during the sensitization phase of
CHS responses (Figure 3b).

Impaired CHS responses in kCYCþ /� mice after removal
of sensitized ear

Some topically applied antigens can be carried along by
lymphatic flow and not be cell associated, and then picked
up by resident DCs or B cells within draining LNs (Allenspach
et al., 2008; Lee et al., 2009). We next examined the effects
of mechanical blockade of antigen drainage to LNs on CHS
responses. Sensitized ears were removed 1, 24, or 48 hours
after application of 0.5% DNFB. CHS responses were
completely abrogated when sensitized ears were removed
1 hour after painting in both WT and kCYCþ /� mice
(Figure 4a and b). When ears were removed 24 hours after
sensitization, WT mice showed CHS responses comparable
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to mice whose ears were not removed, whereas kCYCþ /�

mice showed almost no CHS responses. These results suggest
that drainage of adequate antigen to induce normal CHS
responses, either in free form or within migratory DCs, occurs
within 24 hours in WT mice, as previously described

(Turk and Stone, 1963), whereas this time range is not long
enough to induce CHS in kCYCþ /� mice with severe
lymphatic dysfunction. In contrast, both WT and kCYCþ /�

mice whose ears were removed 48 hours after sensitization
showed similar CHS responses as those without removal of
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Figure 1. Augmented contact hypersensitivity (CHS) responses in k-cyclin transgenic (kCYCþ /�) mice. (a) Mice sensitized with 0.5% DNFB or nonimmunized

mice were challenged with 0.25% DNFB. TG, transgenic; WT, wild type. (b) Mice were sensitized with 0.5 or 0.1% DNFB. Ear thickness was measured 24 hours

after challenge. (c) Mice were sensitized with 0.5% FITC; n¼ 10 for each condition. *Po0.05; **Po0.01. (d) Hematoxylin and eosin (H&E) staining of sections

from ears of wild-type (WT) and kCYCþ /� mice before (0 hours) and 24 hours (24 hours) after elicitation (scale bar¼100 mm). Prominent dermal edema and

dilated vessels (arrows) in the ear from kCYCþ /� mice. Representative pictures from 10 mice per group. (e) The numbers of mononuclear cells, eosinophils,

and dermal major histocompatibility complex (MHC) class IIþ dendritic cells (DCs) per �400 high-power fields (HPFs; n¼5). *Po0.05.
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sensitized ears (data not shown). Quantitative analysis of
infiltrating cells, including mononuclear cells, eosinophils,
and neutrophils, showed similar results with skin thickness
measurements (Figure 4c). kCYCþ /� mice showed almost the
same response as WT mice when sensitized ears were not
removed, which was quite different from the ear thickness

model (Figure 1). This prompted us to further investigate
whether augmented ear swelling was from enhanced
immunization or solely from impaired drainage following
elicitation.

Impaired lymphatic drainage in the elicitation phase of CHS
enhances apparent inflammation in kCYCþ /� mice

Severe lymphatic dysfunction induced impaired migration of
skin DCs, as well as free antigen drainage to regional LNs,
which could not explain augmented ear swelling in kCYCþ /�

mice. Therefore, we adoptively transferred sensitized lym-
phocytes and challenged transplanted mice to investigate
components in the elicitation phase of CHS. WT mice
transferred with sensitized lymphocytes from either WT or
kCYCþ /� mice showed minimal ear swelling (Figure 5a).
In contrast, kCYCþ /� mice transferred with sensitized
lymphocytes either from WT or kCYCþ /� mice showed
enhanced ear swelling. No ear swelling was detected when
sensitized lymphocytes were not transferred to mice. In
addition, kCYCþ /� mice showed stronger irritant responses
compared with WT mice following application of croton oil
(Figure 5b), suggesting that impaired drainage was critically
important for augmented ear swelling in kCYCþ /� mice.

We next examined antigen-specific IFN-g production and
proliferative T-cell responses. IFN-g enzyme-linked immuno-
spot assay revealed more IFN-g-producing cells in inguinal
LNs in WT mice compared with kCYCþ /� mice (Figure 5c).
Almost no spots were detected in cell suspensions from
unsensitized mice or from cells not restimulated with
antigen. Antigen-specific proliferative responses were also
much higher in WT mice compared with kCYCþ /� mice
(Figure 5d), suggesting decreased immunization in the setting
of lymphatic dysfunction. Moreover, we assessed IFN-g,
tumor necrosis factor-a, CXCL9 (chemokine (C-X-C motif)
ligand 9), and CXCL10 (chemokine (C-X-C motif) ligand 10)
mRNA expression in challenged ears, all of which were
reported to be strongly associated with CHS responses
(Goebeler et al., 2001; Ogawa et al., 2010). Surprisingly,
ears of kCYCþ /� mice 24 hours after challenge contained
significantly lower amounts of IFN-g, tumor necrosis factor,
CXCL9, and CXCL10 mRNAs compared with WT mice
(Figure 5e). These results strongly suggested that augmented
ear swelling of kCYCþ /� mice was mainly due to retention of
infiltrating cells and fluid within inflamed tissue.

DISCUSSION
In this study, we have demonstrated that transgenic mice with
severe lymphatic dysfunction have enhanced ear swelling.
Although migration of skin-derived DCs and establishment of
antigen-specific T cells were impaired in the sensitization
phase, defects in drainage of accumulated inflammatory cells
and fluid in the elicitation phase dominated and resulted in
augmented ear swelling overall. The results of this study
provide insight into the immunopathological basis of contact
dermatitis and venous stasis dermatitis commonly observed
in humans with peripheral lymphedema of the lower legs.

We were surprised to see that ear swelling was signifi-
cantly augmented in kCYCþ /�mice compared with WT mice
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(Figure 1). Migration of antigen-bearing DCs to the regional
LNs is believed to be important for CHS responses, especially
in the sensitization phase. Therefore, augmented ear swelling
in kCYCþ /� mice prompted us to investigate whether DCs

could migrate to draining LNs regardless of impaired
lymphatic flow. Migratory DCs move actively via interactions
between CCL21 (chemokine (C-C motif) ligand 21) and
CCR7 (chemokine (C-C motif) receptor 7) (Saeki et al., 1999;
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Ohl et al., 2004). Lymphatic retention in our transgenic mice
almost completely blocked migration of skin DCs to draining
LNs (Figure 2). Abrogation of a chemotactic gradient might
explain the impaired DC migration.

Once antigen-bearing DCs reach draining LNs, prolif-
eration of antigen-specific lymphocytes commences. The
numbers of lymphocytes in draining LNs increased 3 to
5 days following topical antigen exposure (Macatonia et al.,
1987; Tomei et al., 2009). The transgenic mice in this study
also showed increases in draining LN lymphocytes at similar
time points, although the degree was less remarkable than
in WT mice (Figure 3a). This suggests that immune responses,
although less strong, occur within LNs of kCYCþ /� mice
after sensitization. Proliferation of CD8þ T cells and B cells
was impaired in those mice (Figure 3a). CHS responses
are largely mediated by CD8þ T cells (Kehren et al., 1999;
Wang et al., 2000), but B cells are also activated and
involved in CHS responses (Larsen et al., 2007; Watanabe
et al., 2007). Activation of CD8þ T cells and B cells seems

to be mainly mediated by migratory DCs (Macatonia et al.,
1987). Consistently, frequencies of DCs strongly correlated
with those of CD8þ T cells and B cells (Figure 3b). As very
few numbers of migratory DCs in LNs of kCYCþ /� mice were
observed before 96 hours after sensitization (Figure 2 and
data not shown), this may explain why we observed impaired
numbers of CD8þ T cells and B cells. On the other hand,
proliferation of CD4þ T cells was not so impaired in
transgenic mice (Figure 3a), suggesting that these cells may
be activated during CHS in a DC-independent manner.
MHC class II expression on B cells increased in WT mice,
suggesting activation of B cells during CHS, whereas MHC
class II expression on B cells remained low in kCYCþ /�mice.
Interestingly, MHC class II expression on B cells significantly
correlated with the numbers of B cells in draining LNs
(Figure 3b).

Migratory DCs are mainly composed of epidermal
Langerhans cells and dermal DCs (Ohl et al., 2004).
The roles of Langerhans cells in CHS responses are now
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controversial (Bennett et al., 2005; Kaplan et al., 2005; Teoh
et al., 2009). Furthermore, it has been revealed that some
antigens are presented by DCs residing in LNs (Allenspach
et al., 2008; Lee et al., 2009). Therefore, very few antigen-
bearing DCs within LNs of kCYCþ /� mice prompted us to

investigate the role of free antigen directly carried into the
draining LNs. Results revealed that 24 hours was long enough
for the drainage of antigens, either in free form or within
migratory DCs, in WT mice, whereas 48 hours was necessary
for kCYCþ /� mice (Figure 4). These results were comparable
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Figure 5. The elicitation phase is critical for augmenting contact hypersensitivity (CHS) responses in k-cyclin transgenic (kCYCþ /�) mice. (a) Inguinal lymph

node (LN) cells from DNFB-sensitized mice were adoptively transferred intravenously. Recipient mice were elicited with 0.25% DNFB 24 hours after the

transfer. Ear swelling responses were measured 24 hours after challenge. (b) Croton oil was applied to the mouse ear. After 6 and 24 hours, changes in ear

thickness were measured (n¼ 10). (c) Enzyme-linked immunospot (ELISPOT) assay using inguinal LN cells from sensitized and nonsensitized mice. (d) BrdU

proliferation assay using inguinal LN cells from sensitized and nonsensitized mice. (e) Ears challenged with DNFB were harvested and RNA was obtained.

Quantitative reverse transcription-PCR (RT-PCR) was performed for IFN-g, tumor necrosis factor-a (TNF-a), CXCL9 (chemokine (C-X-C motif) ligand 9), and

CXCL10 (chemokine (C-X-C motif) ligand 10). *Po0.05; **Po0.01. One representative result from two independent experiments with triplicates (a, c–e).

AU, arbitrary unit; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SFC, spot-forming cell; TG, transgenic; TNBS, trinitrobenzene sulfonic acid;

WT, wild type.
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to our previous study in which we used injected dye and
lymphangiograms to assess lymphatic flow (Sugaya et al.,
2005). Free antigens can travel much faster than antigen-
bearing DCs. It was reported that fluorescent DCs in the
draining LNs were detectable 30 minutes after skin painting
with FITC, which appears to be too early for skin DCs to
reach LNs (Saeki et al., 1999). Fluorescent B cells were also
detected 1 day following sensitization. Taken together,
resident DCs or B cells in LNs may take up cell-free antigen
flowing through lymphatic vessels and may be involved in
establishing memory T cells.

Consistent with impaired DC migration and LN lympho-
cyte proliferation, antigen-specific IFN-g production and
proliferative responses were decreased in kCYCþ /� mice
(Figure 5c and d). Cytokine mRNA expression in the
challenged ears from transgenic mice were also significantly
decreased (Figure 5e). It was surprising to see a discrepancy
between ear thickness and cytokine expression. Our results
reveal that ear thickness does not necessarily reflect the
degree of immune reaction within tissue. Irritant dermatitis
induced by croton oil, which does not need prior sensitiza-
tion, represents a nonspecific response to foreign antigen.
Enhanced irritant dermatitis in kCYCþ /� mice points to the
importance of lymphatic vessels to clear fluid and infiltrating
cells from inflamed skin. Not only do lymphocytes and DCs
use lymphatics, but erythrocytes are collected through
lymphatic vessels as well (Kissenpfennig et al., 2005). We
previously showed that erythrocytes were detected in dilated
lymphatic vessels in tagged ears of kCYCþ /� mice (Sugaya
et al., 2005). During inflammation, tissue fluid drainage can
be increased by X10-fold (Flessner et al., 1983; Fischer et al.,
1996). Impaired lymphatic system in kCYCþ /� mice, which
do not show clinical symptoms of skin disease in the absence
of skin inflammation, cannot adequately manage the increase
in tissue fluid and cells during inflammation. Defects in the
drainage of accumulated inflammatory cells and fluid in the
elicitation phase of CHS leads to augmented ear swelling,
despite impaired DC migration during the sensitization
phase of CHS. Thus, our findings point to a dominant role
for lymphatic drainage in clearing inflammatory cells from
tissue and in resolving tissue inflammation following the
onset of cutaneous inflammation. These findings are also
clinically relevant in that they provide mechanistic insight
into the problem of allergic contact dermatitis and venous
stasis dermatitis, which frequently occur in the lower legs of
individuals with severe lymphedema.

Although VEGFR-3 is mainly expressed on lymphatic
endothelial cells, other cell types such as corneal DCs,
murine macrophages, and B-cell chronic lymphocytic
leukemia cells can express VEGFR-3 (Hamrah et al., 2003;
Bairey et al., 2004; Stepanova et al., 2007). When we
previously analyzed transgene expression, kCYC mRNA
signals localized to karyomegalic lymphatic endothelial cells
lining vessels positive for VEGFR-3 and podoplanin (Sugaya
et al., 2005). Expression of the kCYC transgene in different
cell types, however, cannot be completely ruled out, and thus
may have a role in the functional changes observed in our
experiments. Other mouse lymphedema models or studies

using human tissues or cells would be necessary to address
this issue.

MATERIALS AND METHODS
Mice

FVB/N mice were purchased from Clea Japan (Tokyo, Japan).

kCYCþ /� mice were generated as previously described (Sugaya

et al., 2005). All mice were free of pathogenic bacteria and viruses.

All experiments were conducted using mice between 6 and

14 weeks of age. All studies and procedures were approved by the

Animal Committee of National Center for Global Health and

Medicine.

Sensitization and elicitation of CHS

CHS responses were induced either with DNFB or FITC, as

previously described (Watanabe et al., 2007). A volume of 50 ml of

0.5 or 0.1% DNFB was painted onto shaved abdominal skin on day

0, and CHS was elicited by applying 0.25% DNFB on the left ear on

day 5. CHS responses to FITC were induced by applying 0.5% FITC

to shaved abdominal skin. After 5 days, CHS reactions were elicited

by applying FITC solution. For all CHS experiments, baseline ear

thickness was determined with a spring-loaded caliper. Ear swelling

responses were measured at 24 hours after elicitation and the change

in ear thickness from baseline measurement was computed. Each ear

was measured three times by a researcher who was blind to the

results and the mean of these values was used. Croton oil was used

to elicit irritant contact dermatitis. A volume of 15 ml of 2.0% croton

oil was painted on the left ear. After 6 and 24 hours, the change

in ear thickness from baseline was measured as described.

DNFB, FITC, and croton oil were purchased from Sigma-Aldrich

(St Louis, MO).

Removal of sensitized ear

To evaluate the effects of delay in antigen draining to LN during CHS

responses, 20 ml of 0.5% DNFB was applied on the left ear on day 0.

Ears were removed 1, 24, or 48 hours after the application.

CHS responses were elicited by applying 0.25% DNFB on the

shaved back skin on day 5. The back skin was removed 24 hours

after the challenge and was assessed histologically. Skin thickness

was histologically measured.

Histological examination

Ear or back skin samples were fixed in 4% formalin and embedded

in paraffin. Sections, 4mm thick, were cut and stained with

hematoxylin and eosin. Skin thickness was histologically measured.

The numbers of mononuclear cells and eosinophils were counted in

10 random grids under magnification of � 400 high-power

fields and averaged. In some experiments, ear skin samples were

snap-frozen, cut into 5-mm-thick cryostat sections, and fixed in

acetone. These sections were then stained with phycoerythrin

(PE)-conjugated anti-I-A/I-E mAb. The numbers of dermal MHC

class IIþ DCs were counted. Each section was examined indepen-

dently by two investigators in a blinded manner.

Quantitative reverse transcription-PCR to assess cytokine
production in the challenged ears

The ears of WT and kCYCþ /� mice were challenged with DNFB as

described above. After 24 hours, the ears were harvested and RNA
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was obtained using the RNeasy Fibrous Tissue Mini Kit (QIAGEN,

Valencia, CA). Complementary DNA was synthesized using TaqMan

Reverse Transcription Reagents (Applied Biosystems, Foster City,

CA). Quantitative reverse transcription-PCR was performed as des-

cribed previously (Sugaya et al., 2006). Primers for mouse IFN-g,

tumor necrosis factor, CXCL9, CXCL10, and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) were as follows: IFN-g forward,

50-AGCAACAGCAAGGCGAAAA-30 and reverse, 50-CTGGACCTGT

GGGTTGTTGA-30; tumor necrosis factor forward, 50-CCACCACGCT

CTTCTGTCTAC-30 and reverse, 50-AGGGTCTGGGCCATAGAAC

T-30; CXCL9 forward, 50-TGGGCATCATCTTCCTGGAG-30 and

reverse, 50-CCGGATCTAGGCAGGTTTGA-30; CXCL10 forward,

50-CCCACGTGTTGAGATCATTG-30 and reverse, 50-CACTGGGTAA

ACGGGAGTGA-30; GAPDH forward, 50-CGTGTTCCTACCCCCAAT

GT-30 and reverse, 50-TGTCATCATACTTGGCAGGTTTCT-30.

Flow cytometry

Inguinal LNs were harvested at the described time after sensitization,

and cell suspensions were prepared by digesting tissues with

1 mg ml�1 collagenase D (Sigma-Aldrich) and 0.2 mg ml�1 DNase

(Sigma-Aldrich). Single-cell suspensions were stained for two-color

immunofluorescence analysis at 4 1C using FITC-conjugated anti-

CD8, FITC-conjugated anti-B220, PE-conjugated anti-I-A/I-E, PE-

conjugated anti-CD11c, and PE-conjugated anti-CD4 mAbs (BD

PharMingen, San Diego, CA) for 20 minutes. Labeled cells were

analyzed on an EPICS XL flow cytometer (Beckman Coulter,

Fullerton, CA) with fluorescence intensity shown on a 4-decade

log scale. Positive and negative populations of cells were determined

using isotype-matched Abs (Southern Biotechnology, Birmingham,

AL) as controls for background staining. Mean fluorescence intensity

for MHC class II on B220þ cells (B cells) was determined for each

experiment.

Adoptive transfer of sensitized LN cells
Donor mice were sensitized with 0.5% DNFB on day 0 as described

above. On day 5, inguinal LN cells were harvested and a mixture of

2–4� 106 cells in 200ml of phosphate-buffered saline was adoptively

transferred intravenously. After 24 hours, mice were elicited with

0.25% DNFB and ear swelling responses were measured after

24 hours.

IFN-c enzyme-linked immunospot assay

Inguinal LNs were harvested 5 days after DNFB sensitization. Cell

suspensions were restimulated in vitro by overnight culture with

mitomycin C-treated syngeneic spleen cells (106 per well) from naive

mice in complete RPMI medium supplemented with 10% fetal calf

serum and containing a final concentration of 0.4 mM DNBS. Control

cultures included cells cultured overnight in medium supplemented

with 0.2 mM of the irrelevant hapten trinitrobenzene sulfonic acid, or

in medium alone. The number of IFN-g-producing cells was

determined using an enzyme-linked immunospot assay kit (R&D

systems, Minneapolis, MN). The number of IFN-g spot-forming cells

present in each well was counted using a microscope, and the results

were expressed as IFN-g spot-forming cells per 106 cells.

Hapten-specific T-cell proliferation in vitro

Inguinal LNs were harvested 5 days after DNFB sensitization. Cell

suspensions were cocultured for 3 days with mitomycin C-treated

syngeneic spleen cells (106 per well) from naive mice, which had

been previously incubated for 20 minutes at 37 1C with 4 mM DNBS,

2 mM trinitrobenzene sulfonic acid, or medium only and washed in

complete medium before use. Cells were stained with BrdU for

16 hours and reacted with anti-BrdU Ab peroxidase conjugate,

followed by peroxidase substrate using Cell Proliferation ELISA,

BrdU (Roche Applied Science, Basel, Switzerland). Sulfuric acid was

added to the solution to terminate enzyme activity. Optical densities

were measured at 450 nm using a 550 microplate reader (Bio-Rad

Laboratories, Hercules, CA).

Statistics

All data are shown as mean valuesþ SEM. Statistical analysis

between two groups was performed using the Mann–Whitney

U-test. Correlation coefficients were determined using Spearman’s

rank correlation test. The P-values of o0.05 were considered

statistically significant.
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