166 research outputs found

    Model of M-theory with Eleven Matrices

    Full text link
    We show that an action of a supermembrane in an eleven-dimensional spacetime with a semi-light-cone gauge can be written only with Nambu-Poisson bracket and an invariant symmetric bilinear form under an approximation. Thus, the action under the conditions is manifestly covariant under volume preserving diffeomorphism even when the world-volume metric is flat. Next, we propose two 3-algebraic models of M-theory which are obtained as a second quantization of an action that is equivalent to the supermembrane action under the approximation. The second quantization is defined by replacing Nambu-Poisson bracket with finite-dimensional 3-algebras' brackets. Our models include eleven matrices corresponding to all the eleven space-time coordinates in M-theory although they possess not SO(1,10) but SO(1,2) x SO(8) or SO(1,2) x SU(4) x U(1) covariance. They possess N=1 space-time supersymmetry in eleven dimensions that consists of 16 kinematical and 16 dynamical ones. We also show that the SU(4) model with a certain algebra reduces to BFSS matrix theory if DLCQ limit is taken.Comment: 20 pages, references, a table and discussions added, typos correcte

    Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arachidonate metabolites are important regulators of human breast cancer cells. Production of bioactive lipids are frequently initiated by the enzyme phospholipase A2 which releases arachidonic acid (AA) that is rapidly metabolized by cyclooxygenases (COX) or lipoxygenases (LO) to other highly potent lipids.</p> <p>Methods</p> <p>In this study we screened a number of inhibitors which blocked specific pathways of AA metabolism for their antiproliferative activity on MCF-7 wild type and MCF-7 ADR drug resistant breast cancer cells. The toxicity of these inhibitors was further tested on human bone marrow cell proliferation.</p> <p>Results</p> <p>Inhibitors of LO pathways (specifically the 5-LO pathway) were most effective in blocking proliferation. Inhibitors of platelet activating factor, a byproduct of arachidonate release, were also effective antiproliferative agents. Curcumin, an inhibitor of both COX and LO pathways of eicosanoid metabolism, was 12-fold more effective in blocking proliferation of the MCF-7 ADR<sup>s </sup>cells compared to MCF-7 wild type (WT) cells. These inhibitors that effectively blocked the proliferation of breast cancer cells showed varying degrees of toxicity to cultures of human bone marrow cells. We observed greater toxicity to bone marrow cells with inhibitors that interfere with the utilization of AA in contrast to those which block utilization of its downstream metabolites. MK-591, MK-886, PCA-4248, and AA-861 blocked proliferation of breast cancer cells but showed no toxicity to bone marrow cells.</p> <p>Conclusion</p> <p>These inhibitors were effective in blocking the proliferation of breast cancer cells and may be potentially useful in human breast cancer therapy.</p

    The Scaffolding Protein Dlg1 Is a Negative Regulator of Cell-Free Virus Infectivity but Not of Cell-to-Cell HIV-1 Transmission in T Cells

    Get PDF
    Background: Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before. Methodology/Principal Findings: Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA

    Diversity in the Architecture of ATLs, a Family of Plant Ubiquitin-Ligases, Leads to Recognition and Targeting of Substrates in Different Cellular Environments

    Get PDF
    Ubiquitin-ligases or E3s are components of the ubiquitin proteasome system (UPS) that coordinate the transfer of ubiquitin to the target protein. A major class of ubiquitin-ligases consists of RING-finger domain proteins that include the substrate recognition sequences in the same polypeptide; these are known as single-subunit RING finger E3s. We are studying a particular family of RING finger E3s, named ATL, that contain a transmembrane domain and the RING-H2 finger domain; none of the member of the family contains any other previously described domain. Although the study of a few members in A. thaliana and O. sativa has been reported, the role of this family in the life cycle of a plant is still vague. To provide tools to advance on the functional analysis of this family we have undertaken a phylogenetic analysis of ATLs in twenty-four plant genomes. ATLs were found in all the 24 plant species analyzed, in numbers ranging from 20–28 in two basal species to 162 in soybean. Analysis of ATLs arrayed in tandem indicates that sets of genes are expanding in a species-specific manner. To get insights into the domain architecture of ATLs we generated 75 pHMM LOGOs from 1815 ATLs, and unraveled potential protein-protein interaction regions by means of yeast two-hybrid assays. Several ATLs were found to interact with DSK2a/ubiquilin through a region at the amino-terminal end, suggesting that this is a widespread interaction that may assist in the mode of action of ATLs; the region was traced to a distinct sequence LOGO. Our analysis provides significant observations on the evolution and expansion of the ATL family in addition to information on the domain structure of this class of ubiquitin-ligases that may be involved in plant adaptation to environmental stress

    The role of the proteasome in the generation of MHC class I ligands and immune responses

    Get PDF
    The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses

    Biocontrol Potential of Forest Tree Endophytes

    Get PDF
    Peer reviewe

    Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis

    Get PDF
    Trichomonas vaginalis is the etiological agent of trichomoniasis, the most prevalent non-viral sexually transmitted disease worldwide. Trichomoniasis is a widespread, global health concern and occurring at an increasing rate. Infections of the female genital tract can cause a range of symptoms, including vaginitis and cervicitis, while infections in males are generally asymptomatic. The relatively mild symptoms, and lack of evidence for any serious sequelae, have historically led to this disease being under diagnosed, and under researched. However, growing evidence that T. vaginalis infection is associated with other disease states with high morbidity in both men and women has increased the efforts to diagnose and treat patients harboring this parasite. The pathology of trichomoniasis results from damage to the host epithelia, caused by a variety of processes during infection and recent work has highlighted the complex interactions between the parasite and host, commensal microbiome and accompanying symbionts. The commercial release of a number of nucleic acid amplification tests (NAATs) has added to the available diagnostic options. Immunoassay based Point of Care testing is currently available, and a recent initial evaluation of a NAAT Point of Care system has given promising results, which would enable testing and treatment in a single visit

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD
    corecore