15 research outputs found
Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats
The GluN2A subunit of N-methyl-D-aspartate (NMDA) receptors becomes dominant during postnatal development, overgrowing the originally dominant GluN2B subunit. The aim of our study was to show changes of anticonvulsant action of the GluN2A subunit-preferring antagonist during postnatal development of rats. Possible anticonvulsant action of GluN2A-preferring antagonist of NMDA receptors P = [[[(1S)-1-(4-bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]phosphonic acid tetrasodium salt (PEAQX) (5, 10, 20 mg/kg s.c.) was tested in 12-, 18-, and 25-day-old rats in three models of convulsive seizures. Pentylenetetrazol-induced generalized seizures with a loss of righting reflexes generated in the brainstem were suppressed in all three age groups in a dose-dependent manner. Minimal clonic seizures with preserved righting ability exhibited only moderately prolonged latency after the highest dose of PEAQX. Anticonvulsant action of all three doses of PEAQX against cortical epileptic afterdischarges (generated in the forebrain) was found in the 25-day-old animals. The highest dose (20 mg/kg) was efficient also in the two younger groups, which might be due to lower specificity of PEAQX and its partial affinity to the GluN2B subunit. Our results are in agreement with the postero-anterior maturation gradient of subunit composition of NMDA receptors (i.e., an increase of GluN2A representation). In spite of the lower selectivity of PEAQX, our data demonstrate, for the first time, developmental differences in comparison with an antagonist of NMDA receptors with a dominant GluN2B subunit
Neuroprotective effect of the 3\u3b15\u3b2-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats
The perinatal hypoxic-ischemic insult frequently leads to mortality, morbidity and plays a key role in the later pathological consequences. The ischemic insult causes a massive release of glutamate and subsequent excitotoxic damage. The neuroactive steroid 3\u3b15\u3b2-pregnanolone glutamate (PG) is a NMDA receptor antagonist acting via use-dependent mechanism and can be used as a neuroprotective agent that may alleviate glutamatergic excitotoxicity in the brain. First, a possible neurotoxic effect of the PG, a novel use-dependent NMDA antagonist, was studied in immature rats. In addition, to compare this effect with a well-described non-competitive NMDA antagonist, the MK-801 (positive control) was used. Animals at postnatal day 12 (P12) were injected intraperitoneally with PG in a doses 1 or 10mg/kg or with MK-801 in a dose 1mg/kg. Effect of PG treatment on the immature brain was evaluated on Fluoro Jade B (FJB) stained sections. Second, a neuroprotective effect of the PG was studied in the model of focal cerebral ischemia in P12. Focal cerebral ischemia was induced by the infusion of the endothelin-1 (ET-1) into the right dorsal hippocampus. PG at the doses 1 or 10mg/kg was administrated intraperitoneally 5min after the end of ET-1 infusion. To evaluate the neuroprotective effect after the PG treatment FJB staining was used. Our results demonstrate a lack of the neurotoxicity of the PG in intact P12. In the second part of the study in the model of the focal ischemia we detected significantly lower occurrence of FJB-positive cells in the afflicted hippocampus in PG treated groups, while animals without PG treatment exhibited massive neurodegeneration. The neuroprotective potential of the PG can serve in the development of therapeutic strategies for brain damage induced by the glutamate excitotoxicity
Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats
The period around birth is a risky time for stroke in infants, which is associated with two major acute and subacute processes: anatomical damage and seizures. It is unclear as to what extent each of these processes independently contributes to poor outcome. Furthermore, it is unclear whether there is an interaction between the two processes - does seizure activity cause additional brain damage beyond that produced by ischemia and/or does brain damage foster seizures? The model of focal cerebral ischemia induced by the intrahippocampal infusion of endothelin-1 (ET-1) in 12-day-old rat was used to examine the role of the endothelin receptors in the development of focal ischemia, symptomatic acute seizures and neurodegeneration. ET-1 (40pmol/\u3bcl) was infused either alone or co-administered with selective antagonists of ETA (BQ123; 70nmol/\u3bcl) or ETB receptors (BQ788; 70nmol/1\u3bcl). Effects of activation of ETB receptors were studied using selective agonist 4-Ala-ET-1 (40pmol/1\u3bcl). Regional cerebral blood flow (rCBF) and tissue oxygenation (pO2) were measured in anesthetized animals with a Doppler-flowmeter and a pO2-sensor, respectively. Seizure development was assessed with video-EEG in freely moving rats. Controls received the corresponding volume of the appropriate vehicle (10mM PBS or 0.01% DMSO-PBS solution; pH7.4). The extent of hippocampal lesion was determined using FluoroJade B staining performed 24h after ET-1 infusion. Infusion of ET-1 or ET-1+ETB receptor antagonist reduced rCBF to ~25% and pO2 to ~10% for about 1.5h, whereas selective ETB agonist, ET-1+ETA antagonist and the PBS vehicle had only negligible effect on the rCBF and pO2 levels. Reduction of rCBF was associated with the development of lesion in the injected hippocampus. In all groups, except sham operated and PBS controls, epileptiform activity was observed after activation of the ETA or the ETB receptors. The data revealed a positive correlation between the severity of morphological damage and all the measured seizure parameters (seizure frequency, average and total seizure duration) in the ET-1 group. In addition, the severity of morphological damage positively correlated with the average seizure duration in animals after infusion of ET-1+ETA receptor antagonist or after infusion of ET-1+ETB receptor antagonist. Our results indicate that the activation of ETA receptors is crucial for ischemia development, however either ETA or ETB receptors mediate the development of seizures following the application of ET-1 in immature rats. The dissociation between the ischemic-producing and seizure-producing processes suggests that damage is not necessary to induce seizures, although it may exacerbate them
The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains
: Pregnanolone glutamate (PA-G) is a neuroactive steroid that has been previously demonstrated to be a potent neuroprotective compound in several biological models in vivo. Our in vitro experiments identified PA-G as an inhibitor of N-methyl-D-aspartate receptors and a potentiator of Îł-aminobutyric acid receptors (GABAARs). In this study, we addressed the hypothesis that combined GABAAR potentiation and NMDAR antagonism could afford a potent anticonvulsant effect. Our results demonstrated the strong age-related anticonvulsive effect of PA-G in a model of pentylenetetrazol-induced seizures. PA-G significantly decreased seizure severity in 12-day-old animals, but only after the highest dose in 25-day-old animals. Interestingly, the anticonvulsant effect of PA-G differed both qualitatively and quantitatively from that of zuranolone, an investigational neurosteroid acting as a potent positive allosteric modulator of GABAARs. Next, we identified 17-hydroxy-pregnanolone (17-OH-PA) as a major metabolite of PA-G in 12-day-old animals. Finally, the administration of PA-G demonstrated direct modulation of unexpected neurosteroid levels, namely pregnenolone and dehydroepiandrosterone sulfate. These results suggest that compound PA-G might be a pro-drug of 17-OH-PA, a neurosteroid with a promising neuroprotective effect with an unknown mechanism of action that may represent an attractive target for studying perinatal neural diseases
A companion to the preclinical common data elements for rodent genetic epilepsy models. A Report of the TASK3-WG1B: Pediatric and Genetic models Working Group of the ILAE/AES Joint Translational Task Force
International audienceRodent models of epilepsy remain the cornerstone of research into the mechanisms underlying genetic epilepsy. Reproducibility of experiments using these rodent models, occurring across a diversity of laboratories and commercial vendors, remains an issue impacting the cost-effectiveness and scientific rigor of the studies performed. Here we present two case report forms (CRFs) describing common data elements (CDE) for genetic rodent models, developed by the TASK3-WG1B Working Group of the International League Against Epilepsy (ILAE) / American Epilepsy Society (AES) Joint Translational Task Force. The first CRF relates to genetic rodent models that have been engineered based on variants described in epilepsy patients. The second CRF encompasses both spontaneous and inbred rodent models. This companion piece describes the elements and discusses the important factors to consider before documenting each required element. These CRFs provide tools that allow investigators to more uniformly describe core experimental data on different genetic models across laboratories, with the aim of improving experimental reproducibility and thus translational impact of such studies
A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3âWG1B, Pediatric and Genetic Models Working Group of the ILAE-AES Joint Translational Task Force
International audienceEpilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy (ILAE) / American Epilepsy Society (AES) Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements (CDEs) for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research, i.e., to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy
Electrographic seizures induced by activation of ETA and ETB receptors following intrahippocampal infusion of endothelin-1 in immature rats occur by different mechanisms
We have demonstrated previously that activation of either the ETA or ETB receptor can induce acute electrographic seizures following the intrahippocampal infusion of endothelin-1 (ET-1) in immature (P12) rats. We also demonstrated that activation of the ETA receptor is associated with marked focal ischemia, while activation of the ETB receptor is not. Exploring the mechanisms underlying seizures induced by these two ET-1 receptor interactions can potentially provide insight into how focal ischemia in immature animals produces seizures and whether ischemiarelated seizures differ from seizures not associated with ischemia. To explore these seizure mechanisms we used microdialysis to determine biomarkers associated with seizures in P12 rats following the intrahippocampal infusion of two different agents: (1) ET-1, which activates both the ETA and ETB receptors and causes focal ischemia and (2) Ala-ET-1, which selectively activates only the ETB receptor and does not cause ischemia. Our results show that seizures associated with combined ETA and ETB receptor activation (and ischemia) have a different temporal distribution and microdialysis profile from seizures associated with ETB activation alone (and without ischemia). Seizures with combined activation peak within the first hour after infusion and the microdialysis profile is characterized by a significant increase in the ratio of glutamic acid to GABA. By contrast, seizures with activation of only the ETB receptor peak in the second hour after infusion and microdialysis shows a significant increase in the ratio of leukotriene B4 to prostaglandin E2. These findings suggest that ischemia-related seizures in immature animals involve an imbalance of excitation and inhibition, while non-ischemiarelated seizures involve an inflammatory process resulting from an excess of leukotrienes
Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits
The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily) starting at postnatal days (PD) 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM) and active place avoidance with reversal on a rotating arena (Carousel) requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM) was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor subunits. These results support the face validity, but not construct validity of this model. We suggest that chronic treatment of adolescent and adult rats does not constitute a plausible animal model of schizophrenia