5,725 research outputs found

    Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer

    Get PDF
    AlxGa1-xN/GaN superlattice electron blocking layers (EBLs) with gradually decreasing Al composition toward the p-type GaN layer are introduced to GaInN-based high-power light-emitting diodes (LEDs). GaInN/GaN multiple quantum well LEDs with 5- and 9-period Al-composition-graded AlxGa1-xN/GaN EBL show comparable operating voltage, higher efficiency as well as less efficiency droop than LEDs having conventional bulk AlGaN EBL, which is attributed to the superlattice doping effect, enhanced hole injection into the active region, and reduced potential drop in the EBL by grading Al compositions. Simulation results reveal a reduction in electron leakage for the superlattice EBL, in agreement with experimental results. (C) 2013 AIP Publishing LLC.open1133sciescopu

    An experimental and numerical study on nonlinear impact responses of steel-plated structures in an Arctic environment

    Get PDF
    Ships and offshore platforms that operate in Arctic regions at low temperatures are likely subjected to impact loads that arise from collisions with icebergs. The aim of this paper was to examine the nonlinear impact response of steel-plated structures in an Arctic environment. In addition to material tensile tests for characterisation of the mechanical properties of polar-class high-tensile steel of grade DH36, an experimental study was undertaken in a dropped-object test facility on steel-plated structure models under impact loads and at low temperatures equivalent to those in Arctic regions. LS-DYNA nonlinear finite element computations were also performed for the corresponding test models. We conclude that nonlinear finite element analyses are useful in the analysis of the nonlinear impact structural responses involving yielding, crushing and brittle fracture at low temperatures as long as the modelling techniques are adequate. The conclusions and insights developed in this paper should be useful in the safety design of ships and offshore platforms intended for operation in Arctic regions

    The Methods to Improve Quality of Service by Accounting Secure Parameters

    Full text link
    A solution to the problem of ensuring quality of service, providing a greater number of services with higher efficiency taking into account network security is proposed. In this paper, experiments were conducted to analyze the effect of self-similarity and attacks on the quality of service parameters. Method of buffering and control of channel capacity and calculating of routing cost method in the network, which take into account the parameters of traffic multifractality and the probability of detecting attacks in telecommunications networks were proposed. The both proposed methods accounting the given restrictions on the delay time and the number of lost packets for every type quality of service traffic. During simulation the parameters of transmitted traffic (self-similarity, intensity) and the parameters of network (current channel load, node buffer size) were changed and the maximum allowable load of network was determined. The results of analysis show that occurrence of overload when transmitting traffic over a switched channel associated with multifractal traffic characteristics and presence of attack. It was shown that proposed methods can reduce the lost data and improve the efficiency of network resources.Comment: 10 pages, 1 figure, 1 equation, 1 table. arXiv admin note: text overlap with arXiv:1904.0520

    Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation

    Get PDF
    Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2; 1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2; 1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum(ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2; 1 complex. Moreover, the assembly of AtPIP2; 1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.1133Ysciescopu

    Metabolomics in Early Alzheimer's Disease: Identification of Altered Plasma Sphingolipidome Using Shotgun Lipidomics

    Get PDF
    The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer's disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility.We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences.In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of metabolomic signatures as peripheral biomarkers

    Tin doped indium oxide core-TiO <inf>2</inf> shell nanowires on stainless steel mesh for flexible photoelectrochemical cells

    Get PDF
    Photoanode architecture is built on highly conductive tin doped indium oxide (ITO) nanowires (NWs) on a flexible stainless steel mesh (SSM). ITO nanowires were coated with the atomic layer deposition grown TiO 2 layer and the photoelectrochemical performance of the stainless steel mesh based photoanode were examined as a function of wire-length and shell-thickness. The photoanode consisting of 20 m-long nanowire core and 36 nm thick shell increased the photocurrent of the testing cell by 4 times, compared to a reference cell. This enhanced photochemical activity is attributed to higher light harvesting efficiency of nanowire arrays and suppressed charge recombination of core-shell structure. © 2012 American Institute of Physics

    Characterization of kinetic and kinematic parameters for wearable robotics

    Get PDF
    The design process of a wearable robotic device for human assistance requires the characterization of both kinetic and kinematic parameters (KKP) of the human joints. The first step in this process is to extract the KKP from different gait analyses studies. This work is based on the human lower limb considering the following activities of daily living (ADL): walking over ground, stairs ascending/descending, ramp ascending/descending and chair standing up. The usage of different gait analyses in the characterization process, causes the data to have great variations from one study to another. Therefore, the data is graphically represented using Matlab® and Excel® to facilitate its assessment. Finally, the characterization of the KKP performed was proved to be useful in assessing the data reliability by directly comparing all the studies between each other; providing guidelines for the selection of actuator capacities depending on the end application; and highlighting optimization opportunities such as the implementation of agonist-antagonist actuators for particular human joints
    corecore