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Abstract 

Ships and offshore platforms that operate in Arctic regions at low temperatures are likely 

subjected to impact loads that arise from collisions with icebergs. The aim of this paper was to 

examine the nonlinear impact response of steel-plated structures in an Arctic environment. In 

addition to material tensile tests for characterisation of the mechanical properties of polar-class 

high-tensile steel of grade DH36, an experimental study was undertaken in a dropped-object 

test facility on steel-plated structure models under impact loads and at low temperatures 

equivalent to those in Arctic regions. LS-DYNA nonlinear finite element computations were 

also performed for the corresponding test models. We conclude that nonlinear finite element 

analyses are useful in the analysis of the nonlinear impact structural responses involving 

yielding, crushing and brittle fractures at low temperatures as long as the modelling techniques 

are adequate. The conclusions and insights developed in this paper should be useful in the safety 

design of ships and offshore platforms intended for operation in Arctic regions.  
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temperature, steel-plated structure, accidental limit state design, safety design 

1. Introduction 

An era of North Pole routes, which have been said to be ‘dream waterways’, is becoming a 

reality due to the effects of global warming. With the opening of the North Pole passages, the 

market for shipbuilding and offshore industries is expected to become more active with 

economical transportation of cargo and the development of natural resources in association with 

the Arctic Ocean. 

When the Arctic passages actually open, ships that use those waterways and the related 

offshore structures may be exposed to risks associated with accidents such as collisions with 

icebergs. Safety studies regarding such accidents are thus required to meet health, safety and 

environmental requirements. As far as collisions are concerned, structural safety is evaluated 

on the basis of the collision energy absorption capability of the structure until the accidental 

limit state is reached. Because the energy absorption capability can be obtained by integrating 

the area below the reaction forces versus the indentation curve of the structure, structural 

crashworthiness involving crushing, yielding and fracture forces must be characterised by 

obtaining the resulting force-indentation curve of the structure in the event of a collision or 

grounding accident [1-6]. 

 In this connection, a wide range of review has conducted in terms of collision [7-17] and most 

of these studies mainly focused on the performance of damaged ships after collision and 

grounding events. Youssef et al. [18] proposed a method for accessing the risk of ship hull 

collapse following a collision. A set of credible collision scenarios which represent the entire 

range of possible collision accidents is selected using a sampling technique based on probability 

density distributions of influencing parameters. Kim et al. [19] also investigated the 

environmental consequences of the involvement of oil tankers in collision using probabilistic 
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approaches. Besides, Ehlers et al. [20] examined the numerical and experimental investigation 

on collision resistance of the X-core structure. The analysis includes a detailed investigation of 

the non-linear plate and laser weld material behaviour using optical, full-field strain 

measurements. The resulting material relationships are implemented into the finite element 

model. 

 In this process, the effects of the environmental conditions associated with the low 

temperatures in Arctic regions should, of course, be taken into account. An extensive review of 

some recent developments in the dynamic inelastic behaviour of structures was made by Jones 

[21], while a number of useful studies [22-34] associated with nonlinear structural responses 

due to impact loads have been undertaken in recent years in the literature. Jones [35-37] 

developed an analytical model to predict the maximum plastic deformation of rectangular plates 

under simply supported and fully clamped boundary conditions. The model was validated with 

experimental results at room temperature (RT) obtained for plates that underwent impact from 

blunt, conical and hemispherical projectiles. Cho and Lee [38] investigated the responses of 

stiffened steel plates subjected to impact loads (approximately 1.6 to 6.2 m/s) at RT and 

developed design formulas for the prediction of the extent of the resulting damage to the 

stiffened plates. Liu et al. [39] studied the impact response and failure mode of thin aluminium 

plates under impact loads (4.5 m/s) and validated the experimental results with numerical 

studies at RT. Mohotti et al. [40] examined the impact resistance of aluminium plates subjected 

to low-velocity impact (5 to 15 m/s) and developed an analytical model to predict the out-of-

plane deflection of the aluminium plates. Paik and Won [41] developed a new empirical formula 

as a function of the impact velocity, the properties of the target plate and the striker for the 

impact perforation energy on steel-plated structures. Haris and Amdahl [42] proposed a new 

analytical formula that can be used to calculate the axial force of steel-plated structures under 

impact loads. Most recently, Samuelides [43] discusses the methods that have been developed 
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and used for the determination of the damage of ship structures subjected to impact loads. It 

was mainly focused in association with realistic modelling of the material behaviour. To the 

best of our knowledge, however, the above-mentioned studies were all performed at RT rather 

than at a low temperature. 

When designing steel-plated structures for low-temperature applications, it is important that 

the influence of low-temperature on the material properties, especially from the point of view 

of yield and tensile strength should be considered. In general, an increase in yield and tensile 

strength at low temperature is characteristic of the materials. However, the performance of 

structures in low-temperatures can adversely affect the tensile toughness towards reduced way. 

Tensile toughness is a measure of a material’s brittleness or ductility; it is often estimated by 

calculating the area beneath the stress-strain curve. Experimental studies conducted in low-

temperature conditions but in a quasi-static loading condition can be found in the literature. 

Paik et al. [44] investigated the effects of low temperature (-40 C and -60 C) on the crushing 

response of steel-plated structures. Dipaolo and Tom [45] examined the same topic [44] at -45 

C. McGregor et al. [46] studied the crushing characteristics of aluminium-plated structures 

and found that the average crushing force of hexagonal aluminium box sections increased as 

the temperature decreased (from RT to -40 C). With respect to impact loads at low 

temperatures, Min et al. [47] conducted an experiment associated with the plastic deformation 

of steel-plated structures subjected to impact loads (approximately 5 to 5.5 m/s) and performed 

comparative studies through numerical analysis. The experiment was conducted at -30 C and 

-50 C using DH36. Manjunathan and Surendran [48] studied dynamic fracture toughness of 

aluminium 6063 with multilayer composite patching at lower temperatures. 

At present, studies on the nonlinear impact responses of steel or aluminium structures at low 

temperatures are lacking, and more research regarding Arctic environments is necessary. The 

objective of this study was therefore to provide useful contributions and insights associated 
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with the nonlinear impact responses of steel-plated structures at low temperatures. 

2. Material tensile test 

2.1 Test set-up for the quasi-static test 

Quasi-static (0.05 mm/s) tensile tests were conducted at RT and at -60 C to determine the 

mechanical properties of DH36, which indicates polar-class high-tensile steel. The dropped-

object experiment described later was performed on steel-plated structures made of DH36. The 

specimen size and shape are shown in Fig. 1(a) in accordance with the requirements of the 

American Society for Testing and Materials E8 [49]. The specimens were extracted on the basis 

of the rolling direction from the parent plate-sheet. The gauge length of the specimen was 50 

mm and its thickness was 6 mm. Table 1 shows the major chemical composition of DH36. 

The tensile test was conducted with a 1,000 kN universal testing machine at the Korea Ship 

and Offshore Research Institute of Pusan National University, Korea. A liquid-nitrogen-cooled 

chamber was used to create the low-temperature environment. Fig. 1(b) shows the appearance 

of the equipment set-up for the tensile coupon test. Sensors for the measurement of applied 

forces and displacements at every 0.1 second interval were used with a load cell and 

extensometer. The temperature was measured at 1 second intervals and kept constant during 

the test within 3 C of the target temperature. 

Fig. 1. Quasi-static test set-up: (a) test specimen and (b) universal testing machine with an environment chamber. 

 

Table 1 Chemical composition of DH36 parent plate (%). 

2.2 Test set-up for the dynamic test 

A dynamic tensile coupon test (5 mm/s and 100 mm/s) was also undertaken with the same 

material and temperatures. In contrast to the quasi-static test, dynamic tensile tests have no 

firmly established national or international standards [50]. For the dynamic test, the parallel 

section of the specimen should be designed for uniform elongation during dynamic straining 



For publication in International Journal of Impact Engineering 

6 

[51]. It has been pointed out that a short parallel section of the specimen can cause non-uniform 

elongation and that asymmetric fractures biased to the loading side always occur for long 

parallel sections. An excessively long parallel section can also involve quite different stress 

waves. 

Taking these observations into account, a specimen size and shape with a gauge length of 50 

mm and a thickness of 6 mm was designed as shown in Fig. 2(a). The test was conducted with 

an MTS servo-hydraulic testing machine (500 kN) at the Korea Ship and Offshore Research 

Institute of Pusan National University, Korea. Liquid nitrogen was injected into the chamber to 

attain the low target temperature, as shown in Fig. 2(b). A digital image correlation (DIC) 

technique using a high-speed camera was used as shown in Fig. 2(c) to satisfy the condition of 

uniform axial displacement along the axis of the specimen. The sampling rate of the high-speed 

camera was 1,000 Hz for 5 mm/s and 20 kHz for 100 mm/s. 

 

Fig. 2. Dynamic test set-up: (a) test specimen, (b) MTS servo-hydraulic testing machine with an environment 

chamber and (c) displacement measurement by DIC. 

2.3 Test results and discussion 

Fig. 3 shows the engineering stress-strain curves of DH36 at RT and at -60 C under quasi-

static and dynamic conditions. The mechanical properties of DH36 are summarised in Table 2. 

Fig. 3. Engineering stress-strain curves with different velocities: (a) RT and (b) -60 oC. 

Table 2 Mechanical properties of DH36. 

At RT, the test results showed that the yield strength (
Y

 ) and tensile strength (
T

 ) increased 

as the loading speed increases. The yield strength increased by 5.5% (5 mm/s) and 13.2% (100 

mm/s), and the tensile strength increased by 3.7% (5 mm/s) and 8.5% (100 mm/s) compared 

with the quasi-static test results. However, the fracture strain decreased by 8.5% (5 mm/s) and 

11% (100 mm/s) with an increase in the loading speed. At -60 C, the yield strength increased 

by 8.5% (5 mm/s) and 17.7% (100 mm/s), and the tensile strength decreased by 1.3% (5 mm/s) 
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and increased by 2.8% (100 mm/s) compared with the quasi-static results. The fracture strain 

decreased by 19.2% (5 mm/s) and 22.1% (100 mm/s) with an increase in the loading speed. 

Fig. 4 presents the mechanical properties of DH36 as a function of the strain rate based on the 

test results. 

Through the material tensile test, the changing of material properties of the DH36 in terms 

of yield and tensile strength increased due to strain rate and low-temperature. However, it was 

confirmed that the fracture strain decreased as expected. Also, it was found that the yield 

strength and fracture strain of the material were more affected by the strain rate at low 

temperatures. However, the tensile strength was not largely dependent on the strain rate. 

Fig. 4. Mechanical properties of DH36 as a function of strain rate: (a) yield strength, (b) tensile strength and (c) 

fracture strain. 

3. Dropped-object tests 

3.1 Test models and scenarios 

Fig. 5. Structural specimens for the dropped-object test. 

Two types of test models were used for the dropped-object tests in small-scale, as shown in 

Fig. 5. The type I model was an unstiffened plate. The type II model was a stiffened panel with 

cross-shaped flat bar stiffeners welded onto it. The edges of the test models were also welded 

to the surrounding rigid jig, which was fully clamped by bolts. Both types of plates were 1,200 

mm   1,200 mm   6 mm. The drop height of the striker was 3 m at RT and 5 m at -60 C 

for type I and type II models, separately. Considering the test facility such as load-cell capacity, 

low-temperature chamber and test model, two sets of tests of different drop height for the 

models were undertaken. Table 3 shows the scenarios for dropped-object testing.  

Table 3 Scenarios for the dropped-object testing. 
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3.2 Experimental set-up and procedure 

The dropped-object test was carried out using a cone-shaped striker. The weight that the 

striker applied to the test models, including that of the striker holder, was about 11.5 kN. The 

striker was set to hit the centre of the test model. Fig. 6(a) shows the dropped-object test facility 

with the high-speed camera installed. A DIC technique was used to measure the penetration of 

the striker during the experiment. The sampling rate of the high-speed camera was 10 kHz. 

Fig. 6. Experimental set-up: (a) dropped-object test facility and test models with installed high-speed camera, (b) 

low-temperature chamber, (c) temperature history and (d) strain gauge location. 

To simulate an Arctic environment, a low-temperature chamber was made with an insulating 

system. Fig. 6(b) shows the installed low-temperature chamber into which liquid nitrogen was 

injected to reach a low target temperature equivalent to that in an Arctic environment. A T-type 

thermocouple was used for the practical measurement of the temperature of the test models. 

The part of the thermocouple that was exposed to the environmental temperature was wrapped 

with insulating materials so as not to be affected by the temperature in the chamber and was 

kept close to the test model. 

The test model was divided into four zones. The temperature was recorded at the centre of 

each zone. Fig. 6(c) indicates the temperature history of the test model during the test. The 

experiment began after the temperature was lowered to about 5 C because a loss of temperature 

could occur when the chamber was removed shortly before testing with a dropped-object. 

Furthermore, four strain gauges were attached at right angles to confirm the axis symmetry 

of the strain at sites 150 mm and 500 mm from the centre of the test model as shown in Fig. 

6(d). 

3.3 Experimental results at RT 

Fig. 7. Test models after test at RT: (a) type I and (b) type II. 

Figs. 7(a-b) show the lack of significant deformation or failure of the test model after the 
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experiment. The high-speed camera measured the velocity of the striker at about 7.06 m/s just 

before impact loading. The maximum indentation values of the type I and type II models were 

109.28 mm and 74.87 mm, respectively, as shown in Fig. 8(a), where ‘Reaction= 0’ on the 

graph indicates that the force signal equals zero. The maximum forces of the two models were 

497.97 kN and 497.07 kN, respectively, as shown in Fig. 8(b). Fig. 8(c) shows the force versus 

indentation curves, in which the gradient of the type II plates rather than the type I plates rapidly 

increased when the impact load was applied for the first time because the two structures differed 

in their overall stiffness. When the load was removed, both types showed a spring-back 

phenomenon; the type I and type II plates rebounded 23.71 mm and 14.72 mm, respectively. 

These results showed that the type II plates with stiffeners had greater initial stiffness. 

Fig. 8(d) shows the energy absorption versus indentation curves for the type I and type II 

models obtained by the experiment. It is obvious that the type II stiffened panel model is 

superior to the type I unstiffened plate in terms of energy absorption capability according to the 

indentation. 

The locations of the strain gauges at 150 mm on both test models were confirmed to be 

symmetric, as shown in Figs. 8(e-f). The strains of the type I model measured at 500 mm were 

confirmed to be symmetric in the right-angle direction, as shown in Fig. 8(g), but those of the 

type II model were asymmetric, as shown in Fig. 8(h). 

 

Fig. 8. Test results at RT: (a) indentation-time curves, (b) force-time curves, (c) force-indentation curves, (d) 

absorbed energy-indentation curves, (e) strain-time curves for type I model at 150 mm, (f) strain-time curves for 

type II model at 150 mm, (g) strain-time curves for type I model at 500 mm and (h) strain-time curves for type II 

model at 500 mm. 

 

3.4 Experimental results at -60 C 

Fig. 9. Test models after test at -60 C: (a) type I and (b) type II. 

After the experiment, the type I plate had no fractures, but the type II plate had suffered 

brittle fracture. Figs. 9(a-b) compare the deformed shapes of the two test models after the 
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experiment. Both models have an initial velocity of 8.57 m/s at the moment of impact. The 

maximum indentation of the type I model was 104.07 mm (Fig. 10(a)) and the maximum forces 

were 660.25 kN (Fig. 10(b)). Data on the maximum indentation and forces could not be 

obtained for the type II model because the striker penetrated through the structure. In terms of 

force versus indentation curves (Fig. 10(c)), the gradient of the type II model rapidly increased 

shortly after impact loading as compared with the type I model, similar to the results of the 

experiment at RT. This result implies that the stiffened panels can sustain deformations more 

effectively than unstiffened plates, even at low temperatures. The effects of spring-back were 

also observed for the type I model; a value of 20.13 mm was demonstrated. In the type II model, 

no spring-back phenomenon was confirmed because the fracture was followed by the 

penetration of the striker through the test model. 

Fig. 10(d) compares the energy absorption capabilities for the type I and type II models, as 

obtained by the experiment at -60 oC. It is obvious that the type II stiffened panel model is 

superior to the type I unstiffened plate model in terms of energy absorption capability according 

to the indentation until fracture occurs, but the brittle fracture occurred in the type II model 

resulted in sudden loss of the energy absorption capability. 

Upon comparison of the strain values, no data regarding the strain at 150 mm for either model 

could be measured until the test ended because the strain gauges were broken as a result of the 

shocks and structural fractures, as shown in Figs. 10(e-f). At the 500 mm position, the sections 

of A-A’ and B-B’ were confirmed to be symmetric for the type I model, as shown in Fig. 10(g), 

and the strain gauge attached on the A-A’ section confirmed permanent plastic deformation of 

about 0.00093, as shown in Fig. 10(h). 

Fig. 10. Test results at -60 C: (a) indentation-time curves, (b) force-time curves, (c) force-indentation curves, 

(d) absorbed energy-indentation curves, (e) strain-time curves for type I model at 150 mm, (f) strain-time curves 

for type II model at 150 mm, (g) strain-time curves for type I model at 500 mm and (h) strain-time curves for type 

II model at 500 mm. 
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4. Nonlinear finite element analysis 

The nonlinear impact responses obtained in the dropped-object tests were compared by 

nonlinear finite element (FE) analysis. In this study, LS-DYNA 3D, a general-purpose FE 

analysis code that is appropriate for nonlinear explicit dynamic simulations, was used for the 

analysis of the structural responses of the test models. 

4.1 FE modelling 

The test models, striker and jig were imitated as much as possible to conduct FE modelling 

like that shown in Fig. 11. The test structures were modelled by four-node quadratic elements 

with five-integration points throughout the thickness defining the Belytschko-Lin-Tsay shell 

element formulation. These shell elements were based on a combined co-rotational and 

velocity-strain formulation [52]. The piecewise linear plasticity material model (MAT 24) was 

adopted to allow failing elements to be removed at the critical strain [53]. The welded area was 

also considered by increasing the element thickness by 50% as indicated in Fig. 12. This 

modelling technique was relevant because welding may increase the resistance of the stiffener 

and help the transverse transition between the stiffener and the plate [54-55].  

Because the size of the meshes greatly affects the computational time and accuracy of the 

result, a mesh-convergence test was performed for the type I and type II models before the 

actual FE analysis. As a result, the best-size mesh for the shell elements was determined to be 

20 mm   20 mm. 

Fig. 11. Finite element model applied. 

 

Fig. 12. Weld elements at the plate-stiffener intersections. 

The boundary conditions of the test jig for the FE model were fixed in the vertical direction 

and the bolting spots were fixed in the horizontal direction. The cone-shaped striker was set to 

be the rigid body block. The initial velocities of 7.06 m/s at RT and 8.57 m/s at -60 C, as 
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measured by the high-speed camera, were used as input data. The contact between the striker 

and the structure was set to be the ‘automatic node to surface’. In the type II model, an 

‘automatic single surface’ was added to reflect the folded mechanism of the structure. The static 

and kinetic coefficients of friction were assumed to be 0.3 for all analyses. 

4.2 Material modelling 

4.2.1 True stress-strain curve 

The effects of low temperature can differ in terms of strain hardening. Table 4 shows the 

strain hardening exponents (n) and strength coefficients (K) determined by the material tensile 

tests for DH36. It was found that the properties of hardening and strength were better at low 

temperatures than at RT. 

Table 4 Strain hardening exponents and strength coefficients for DH36. 

Fig. 13 shows the true stress-true plastic strain curves that were transformed through Eqs. (1) 

and (2) at RT and -60 C in the quasi-static condition.  

(1 )t e e                                  

(1) 

ln(1 )t e                                 

(2) 

where e = engineering stress, e = engineering strain, t = true stress and t = true strain. 

Fig. 13. True stress-true plastic strain curves. 

As the engineering stress-strain curve does not give a true indication of the deformation 

characteristics of a material, it was necessary to use the true stress-strain curve that represents 

the basic plastic-flow characteristics of the materials [56]. In the true curve until the onset of 

necking, the true stress ( t ) and the true plastic strain ( t ) were expressed in terms of the 
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engineering stress ( e ) and the engineering strain ( e ). In this way, the low-temperature 

hardening effects could be considered using the piecewise flow stress at -60 C. 

4.2.2 Effects of strain rate 

The material properties such as yield stress should be considered by taking into account the 

dynamic effects, which are called strain rate effects. The Cowper-Symonds model is usually 

used to evaluate the strain rate effects [1, 57]. The strain rate effects were taken into 

consideration by using the dynamic plastic-hardening constitutive equation (Eq. (3)) of 

Cowper-Symonds that is most widely used in the naval architecture and offshore engineering 

fields [2-5]. The Cowper-Symons [57] have been proposed the coefficients for mild steel, 

C=40.4, q= 5 and Paik and Chung [58] have been suggested the coefficient for high-tensile 

steel, C=3200, q= 5, respectively. Fig. 14 plots the Cowper-Symonds equation together with 

the relevant coefficients for mild or high-tensile steel. It is obvious that the mild steel is 

sensitive more than high-tensile steel. It is also evident that the material yield strength increases 

with increase in the strain rate and these coefficients are dependent on the material types, among 

other factors.  

1

1
q

Yd

Y C

 



 
   

 
                                (3) 

where Y  and Yd  are the yield stress under static and dynamic loads, respectively,   is 

the strain rate, and C and q are the coefficients determined by experiment. 

In the present paper, the coefficients, both C= 3200, q= 5 and C= 40.4, q= 5 were compared 

to investigate the difference of the results when it comes to the high-tensile steel in the FE 

analysis. 

Fig. 14. Dynamic yield strength plotted versus strain rate for mild and high tensile steel. 
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4.2.3. Fracture criterion  

The tensile test can determine another important material property, the fracture strain, which 

is presented in Table 2. However, it is necessary to mention that failure due to material rupture 

is not well resolved numerically because the fracture length is smaller than the side length of 

the elements in the finite element model. Thus, the elements used in finite element models 

cannot capture such a local phenomenon [59].  

 The fracture model used in the present paper was the shear fracture criterion. The shear 

criterion, sometimes referred to as the criterion of equivalent strain, is a phenomenological 

representation of the initiation of damage due to shear band localization. The criterion presumes 

that the fracture initiates when the accumulated equivalent plastic strain reaches the material 

failure strain. It is frequently used in simulations of ship collision and grounding and has gained 

popularity due to its simple formulation [30], [60-62]. In its simplest form, the only input used 

is the critical fracture strain that is affected by various factors including mesh size, strain rate 

and low-temperature. It is also affected by material models of the finite-element simulation in 

terms of the stress-strain relationships. In association with this, the DNV [63] and NTSI [64] 

proposed the values of shear fracture criterion for accidental events: 0.2 for mild steel and 0.15 

for high-tensile steel. However, they do not cover the combined effects of low temperature and 

strain rate [65]. 

Apart from element size, computation time and computation code (Implicit/Explicit), low-

temperature and high strain rate affected the failure phenomenon in the FE analysis. Two 

parameters should be considered together with others to get a reliable result. A failure strain 

was applied in LS-DYNA with an inputted number, although the strain rates changed in every 

computation step. Furthermore, even though the fracture strains were obtained from 

experiments, the values could not directly be applied in the FE analysis. To consider the fracture 

strain in FEA, the critical fracture strain was used as a function of the element size, namely [4] 
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0.58

4.1
fcr

f

t

S





 
   

 
                          (4) 

where f  is the fracture strain of the material obtained from the tensile test, fcr  is the 

critical fracture strain for FE simulations, S= mesh size (length), and t= plate thickness of the 

material. In the present paper, the failure strains that showed relevant indentations with 

experiments were determined and used in the FE analysis. The fracture strains used in FEA are 

shown in Fig.15. 

Fig. 15. Critical fracture strain for FE simulations. 

4.3 Experimental results versus nonlinear FE computations 

4.3.1 At RT 

Figs. 16(a-b) and Figs. 17(a-b) present the stress distributions obtained by LS-DYNA 

computations for the type I and II models with different coefficients, respectively, at RT. In 

addition, Figs. 18(a-h) show the comparison of the results of the experiment and the FE analysis. 

These results are summarised in Table 5.  

Fig. 16. Stress distribution for type I model at RT: (a) C = 3200 and q= 5 and (b) C= 40.4 and q= 5. 

Fig. 17. Stress distribution for type II model at RT: (a) C = 3200 and q= 5 and (b) C= 40.4 and q= 5. 

Table 5 Comparative results at RT. 

The type I model applied C= 3200 and q= 5 showed good agreement in association with  

indentation and force. The differences between the experimental results and those of the FE 

analysis in terms of indentation and force were about -0.4% and -3%, respectively. However, 

in case of C= 40.4 and q= 5, the results showed low values in indentation and was overestimated 

in forces as shown in Figs. 18 (a), (c). In the type II model inputted C= 3200 and q= 5, the 

differences of the forces became slightly greater, but those of the FE analyses were still at most 
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-5.3% and 9.8% against the test. In comparison to the relation between force and indentation 

as shown in Fig. 18(f), a similar tendency was confirmed, except for the early stages of the 

forces. Figs. 18(g-h) compare the absorbed energy versus indentation curves between the 

experiment and FEA for the type I and type II models, respectively. It can be concluded that 

using the C= 3200 and q= 5 for the high-tensile steel in FEA gives good prediction to the 

experimental results. 

Fig. 18. Comparison of results at RT: (a) indentation-time curves for type I model, (b) indentation-time curves for 

type II model, (c) force-time curves for type I model, (d) force-time curves for type II model, (e) force-indentation 

curves for type I model, (f) force-indentation curves for type II model, (g) absorbed energy-indentation curves for 

type I model and (h) absorbed energy-indentation curves for type II model. 

4.3.2 At -60 C 

Figs. 19(a-b) and Figs. 20(a-b) illustrate the results of the FE analysis for types I and II at -

60 C. Figs. 21(a-h) present a comparison of the results. Table 6 displays a summary of the 

comparison. 

Fig. 19. Stress distribution for type I model at -60 C: (a) C = 3200 and q= 5 and (b) C = 40.4 and q= 5. 

Fig. 20. Stress distribution for type II model at -60 C: (a) C = 3200 and q= 5 and (b) C = 40.4 and q= 5. 

Table 6 Comparative results at -60 C. 

For the type I model used C= 3200 and q= 5, the errors of the indentation and force against 

the experiment were about 11.5% and -0.5%, which showed good agreement with the forces. 

However, the results obtained from C= 40.4 and q= 5 were higher than those of the other 

coefficients. It was observed that the use of constants C= 40.4 and q= 5 makes the impact peak 

force higher than it should. This means that the material strengthening is overestimated by the 

constants, especially at high strain rate. This tendency is quite similar to the results at RT. The 

type II model with the brittle fracture showed a similar tendency regarding the force at the 

initial stage, but a structural response at later stage that sudden rupture occurred was somewhat 

different indicated by the comparison; the peak load point of the experimental results reached 
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about 700 kN while the FE results indicated the lowest value in case of applied C= 3200, q= 5. 

Figs. 21(g-h) compare the absorbed energy versus indentation curves between the experiment 

and FEA for the type I and type II models at -60 C, respectively.  

 Fig. 21. Comparison of results at -60 C: (a) indentation-time curves for type I model, (b) indentation-time curves 

for type II model, (c) force-time curves for type I model, (d) force-time curves for type II model, (e) force-

indentation curves for type I model, (f) force-indentation curves for type II model, (g) Absorbed energy-indentation 

curves for type I model and (h) Absorbed energy-indentation curves for type II model. 

Moreover, it is also meaningful to analyse the total energy absorption capability in the view 

point of the safety design. Table 7 presents the comparison of the total energy absorption 

between the experiment and FEA for the type I and type II models, respectively. In experimental 

results, it was found that the type II stiffened model is also superior to the type I unstiffened 

model at RT and -60 oC. The total energy absorption capability for type II model at -60 oC refers 

to the preceding occurrence of the brittle fracture.  

Table 7 Total energy absorption. 

5. Discussion 

5.1 Influence of low-temperature 

When the results for the type II model at RT are compared with those at a low temperature, 

it can be seen that the relation between force and indentation at the initial stage was almost 

identical. It was also of a similar level of structural stiffness compared to that in RT conditions 

and showed a good degree of resistance against deformation. It was found that the initial 

stiffness of the type II model was maintained at -60 C. Also, the presence of stiffeners 

increased the stiffness of the structure and increased the energy absorption capabilities 

according to the indentation at both temperatures. However, even though the structure of the 

type II model can resist deformation at the initial stage at -60 oC, it fractured after that stage. 

This is an interesting phenomenon. This finding indicates that although the initial stiffness or 
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energy absorption capability of stiffened structure may be higher, the ultimate resistance at the 

initiation of fracture can be lower at low temperatures. In fact, this is in conflict with the linear-

elastic method of structure design. Stiffened structures are generally desired to keep 

deformations small [66]; however, if the stiffened structure is intended to resist impact loads at 

low temperatures, a new design, which has higher ductility and capable of absorbing high 

energy, should be developed. However, considering the small-scale test, it should be considered 

the boundary condition by Heat Affected Zone (HAZ) of the test models that is actually welded. 

Liu et al. [59] has been pointed out that if the specimen and impact load used in the experiment 

were too small, the dynamic response of these small specimens will be affected by the boundary 

conditions. 

5.2 Brittle fracture 

Fig. 22. Brittle fracture for type II model at -60 oC. 

The other point to discuss regards the occurrence of brittle fracture. In the impact engineering, 

it may be difficult to obtain detailed information on a fracture problem such as that on the 

stiffened structures in low-temperature because the mechanism and its responses of structures 

are highly nonlinear. Some penetration problems with failure and its mechanism for the steel 

plates are published. Yong [67] found that the perforation process of the stiffened-plates is very 

sensitive to the nose shape of the projectiles. Also, the impact response and failure mode of the 

steel plates are highly affected by the geometry of the indenters [39]. Fig. 22 shows the scene 

captured by high-speed camera at the moment of the brittle fracture for type II model at -60 oC. 

Fig. 23. Bottom of type II model at -60 C: (a) crack propagation and (b) local buckling. 

It was observed that the crack began at the centre of the test model and then propagated into 

the welding line in a diagonal direction at -60 oC, as shown in Fig. 23 (a). In general, materials 

exposed to low temperatures or impact loads are more likely to suffer brittle fracture. It has 
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already been noted that the fracture toughness decreases as thickness increases [68]. As ships 

and offshore platforms are built with plates much thicker than the 6 mm plates used in this test, 

it is fair to envision that brittle fracture would be more likely to occur in Arctic regions. 

Furthermore, the lateral-torsional buckling of the stiffener (also called tripping) was observed 

in the type II model at both temperatures, as shown in Fig. 23(b). The lateral-torsional buckling 

of the stiffeners is a phenomenon in which the failure of a stiffened panel occurs after the 

stiffener twists sideways about the edge of the stiffener web attached to the plating. When the 

torsional rigidity of the stiffener is insufficiently strong, the stiffener can twist sideways [2]. 

6. Conclusions 

In this study, the nonlinear impact response of steel-plated structures in an arctic environment 

and its application in simulation are presented. In order to investigate the impact responses of 

the structures, the experimental approach, i.e. material tensile test and small- scale dropped-

object model test was undertaken, and also FE analysis was performed to enhance the 

interpretation of the tests. 

-From the material tensile test, the engineering stress-strain curves were obtained with 

different velocities, and the changing of the mechanical properties of the material was analysed 

as a function of strain rate and temperature. All the experimental results were used for the FE 

analysis as an input data. 

-Through the dropped-object model test at RT and -60 oC, impact response of the steel-plated 

structures was actually confirmed in the view point of the force, indentation and energy 

absorption capability. The unstiffened plate model (type I) did not fracture at -60 oC, and as a 

result a spring-back phenomenon was observed while the stiffened plate model (type II) showed 

brittle fracture at the same temperature. In case of small-scale test, it is considered that the 

boundary conditions and heat affect zone due to welding could influence the test results. 

Therefore, further experimental studies on full scale or at least large scale test models should 
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be undertaken to examine the practical impact responses of steel-plated structures at low 

temperatures. 

-Nonlinear FE analyses using LS-DYNA were also undertaken by comparison with the test 

results. The material definition for dynamic impact analyses has been considered by means of 

the true stress–strain curve, the strain rate sensitivity of materials, and the failure strain. The 

structural responses were considered with both impact loads and low temperatures. In the 

process of the FE analysis, the different coefficients, C=40.4, q=5 and C=3200, q=5 that is 

widely used in FE analysis, were applied to the test model to confirm the influence of the 

coefficients. From the comparison, it is recommended that the use of the C=3200, q=5 rather 

than the C=40.4, q=5 in FEA is advisable for the high-tensile steel in the impact application. 

For the reliable result in simulation, however, more refined and realistic approaches for the 

analysis combined impact loads with low temperatures should be studied. 

The North Pole passage is not yet active. However, if these routes open in the near future, 

the effects of low temperatures on the safety performance and structural integrity of ships and 

offshore structures that are subjected to impact loads will be very important. 
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Table 1 

Chemical composition of DH36 parent plate (%). 

C Si Mn P S Ni Cr Mo Cu Al V Ti 

0.131 0.425 1.175 0.015 0.006 0.02 0.04 0.017 0.013 0.023 0.006 0.01 

 

Table 2  

Mechanical properties of DH36. 

Temperatures (oC) Velocity (mm/s) Strain rate   (/s) Y
  (MPa) 

T
  (MPa) f

  (-) 

RT 

0.05 0.001 383.7 530.2 0.345 

5 0.1 404.2 550.3 0.318 

100 2 433.7 575.8 0.309 

-60 

0.05 0.001 446.2 606.5 0.365 

5 0.1 484.1 602.2 0.295 

100 2 525.0 627.3 0.284 

 

Table 3  

Scenarios for the dropped-object testing. 

No. Temperature (oC) Drop height (m) Model Stiffener type 

1 
RT 3 

Type I - (none) 

2 Type II Flat bar (cross shaped) 

3 
-60 5 

Type I - (none) 

4 Type II Flat bar (cross shaped) 

 

Table 4  

Strain hardening exponents and strength coefficients for DH36. 

Temperature (oC) n K (MPa) 

RT 0.214 936.2 

-60 0.232 1103.8 
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Table 5 

Comparative results at RT. 

 Model Experiment 
FEA 

(C=3200, q=5) 
Error (%) 

FEA 

(C=40.4, q=5) 
Error (%) 

Indentation 

(mm) 

Type I 109.3 108.8 -0.4 101.9 -6.8 

Type II 74.9 70.9 -5.3 67.9 -9.3 

Force 

(kN) 

Type I 498 483 -3.0 649.3 30.4 

Type II 497.1 545.6 9.8 749.8 51.8 

 

Table 6 

Comparative results at -60 C. 

 Model Experiment 
FEA 

(C=3200, q=5) 
Error (%) 

FEA 

(C=40.4, q=5) 
Error (%) 

Indentation 

(mm) 

Type I 104.1 116.1 11.5 106.2 2.0 

Type II - - - - - 

Force 

(kN) 

Type I 660.3 656.8 -0.5 790.7 19.7 

Type II - - - - - 

 

 

Table 7 

Total energy absorption. 

Temperature (oC) Model Experiment (kJ) 
FEA (kJ) 

(C=3200, q=5) 
Error (%) 

FEA (kJ) 

(C=40.4, q=5) 
Error (%) 

RT 
Type I 19.08 17.60 -7.7 21.35 11.9 

Type II 21.43 18.53 -13.5 22.27 3.9 

-60 
Type I 24.81 26.95 8.7 24.77 -0.14 

Type II 28.74 28.71 -0.1 41.85 45.62 
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(a) Test specimen. (b) Universal testing machine with an environment 

chamber. 

 

Fig. 1. Quasi-static test set-up. 
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(a) Test specimen. 

 

 

 
(b) MTS servo-hydraulic testing machine with an environment chamber. 

 

 

 
(c) Displacement measurement by DIC. 

 

Fig. 2. Dynamic test set-up. 
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(a) RT. (b) -60 oC. 

 

Fig. 3. Engineering stress-strain curves with different velocities. 
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(a) Yield strength. 

 

  
(b) Tensile strength. (c) Fracture strain. 

 

Fig. 4. Mechanical properties of DH36 as a function of strain rate. 
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Fig. 5. Structural specimens for the dropped-object test. 
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(a) Dropped-object test facility and test models 

with installed high-speed camera. 

 

(b) Low temperature chamber. 

 

 
 

(c) Temperature history. 

 

(d) Strain gauge location. 

 

Fig. 6. Experimental set-up. 
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(a) Type I. (b) Type II. 

 

Fig. 7. Test models after test at RT. 
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(a) Indentation-time curves. 

 

(b) Force-time curves. 

 

 

 

 

(c) Force-indentation curves. (d) Absorbed energy-indentation curves. 

 

  

(e) Strain-time curves for type I model at 150 mm. (f) Strain-time curves for type II model at 150 mm. 
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(g) Strain-time curves for type I model at 500 mm. (h) Strain-time curves for type II model at 500 mm. 

Fig. 8. Test results at RT. 
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(a) Type I. (b) Type II. 

Fig. 9. Test models after test at -60 C. 
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(a) Indentation-time curves. (b) Force-time curves. 

  

(c) Force-indentation curves. (d) Absorbed energy-indentation curves. 

  

(e) Strain-time curves for type I model at 150 mm. (f) Strain-time curves for type II model at 150 mm. 
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(g) Strain-time curves for type I model at 500 mm. (h) Strain-time curves for type II model at 500 mm. 

Fig. 10. Test results at -60 C. 
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Fig. 11. Finite element model applied. 
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Fig. 12. Weld elements at the plate-stiffener intersections. 
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Fig. 13. True stress-true plastic strain curves. 
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Fig. 14. Dynamic yield strength plotted versus strain rate for mild and high-tensile steel. 
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Fig. 15. Critical fracture strain for FE simulations. 
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(a) C=3200 and q=5. 

 

(b) C=40.4 and q=5. 

 

Fig. 16. Stress distribution for type I model at RT. 
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(a) C=3200 and q=5. 

 

(b) C=40.4 and q=5. 

 

Fig. 17. Stress distribution for type II model at RT. 
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(a) Indentation-time curves for type I model. (b) Indentation-time curves for type II model. 

  

(a) Force-time curves for type I model. 

 

(b) Force-time curves for type II model. 

 

  
(e) Force-indentation curves for type I model. 

 

(f) Force-indentation curves for type II model. 
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(g) Absorbed energy-indentation curves  

for type I model. 

(h) Absorbed energy-indentation curves  

for type II model. 

 

Fig. 18. Comparison of results at RT. 
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(a) C=3200 and q=5. 

 

(b) C=40.4 and q=5. 

 

Fig. 19. Stress distribution for type I model at -60 C. 
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(a) C=3200 and q=5. 

 

(b) C=40.4 and q=5. 

 

Fig. 20. Stress distribution for type II model at -60 C. 
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(a) Indentation-time curves for type I model. 

 

(b) Indentation-time curves for type II model. 

 

  

(c) Force-time curves for type I model. 

 

(d) Force-time curves for type II model. 

 

  
(e) Force-indentation curves for type I model. 

 

(f) Force-indentation curves for type II model. 
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(g) Absorbed energy-indentation curves  

for type I model. 

(h) Absorbed energy-indentation curves 

for type II model. 

 

Fig. 21. Comparison of results at -60 C. 
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Fig. 22. Brittle fracture for type II model at -60 oC. 
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(a) Crack propagation. (b) Local buckling. 

 

Fig. 23. Bottom of type II model at -60 C. 

 


