7,693 research outputs found

    Highly efficient source for frequency-entangled photon pairs generated in a 3rd order periodically poled MgO-doped stoichiometric LiTaO3 crystal

    Full text link
    We present a highly efficient source for discrete frequency-entangled photon pairs based on spontaneous parametric down-conversion using 3rd order type-0 quasi-phase matching in a periodically poled MgO-doped stoichiometric LiTaO3 crystal pumped by a 355.66 nm laser. Correlated two-photon states were generated with automatic conservation of energy and momentum in two given spatial modes. These states have a wide spectral range, even under small variations in crystal temperature, which consequently results in higher discreteness. Frequency entanglement was confirmed by measuring two-photon quantum interference fringes without any spectral filtering.Comment: 4 pages, 4 figures, to be published in Optics Letter

    Hot electron effects and electric field scaling near the metal-insulator transition in multilayer MoS2

    Get PDF
    The layered transition metal dichalcogenides have emerged as valuable platforms to study the challenging problem of metal-insulator transition in two dimensions. It was demonstrated that multilayer MoS2 exhibits clearly distinctive metallic and insulating behaviors in conductivity in response to both temperature and the electric field. Here, we report on the scaling analyses of conductivity for the electric field in addition to the temperature, which is performed with the consideration of electron-electron interactions for multilayer MoS2. Based on the analysis of hot electron effects in the electric field, we find that scaling for the electric field is relevant for the metallic phase in the high-field regime, enabling one to extract the dynamical critical exponent z close to 1. This result supports that the metal-insulator transition in multilayer MoS2 is a true quantum critical phenomenon, in which strong interactions induce the transition. ©2020 American Physical Society11sciescopu

    Development of an ex vivo model for the study of cerebrovascular function utilizing isolated mouse olfactory artery

    Get PDF
    OBJECTIVE: Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. METHODS: The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately -500 µm in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). RESULTS: We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin PGH(2). Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. CONCLUSION: Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models

    A multilevel analysis of social capital and self-reported health: evidence from Seoul, South Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to resolve two limitations of previous studies. First, as only a few studies examining social capital have been conducted in non-western countries, it is inconclusive that the concept, which has been developed in Western societies, applies similarly to an Asian context. Second, this study considers social capital at the individual-level, area-level and cross-levels of interaction and examines its associations with health while simultaneously controlling for various confounders at both the individual-level and area-level, whereas previous studies only considered one of the two levels. The purpose of this study is therefore to examine the associations between social capital and health by using multilevel analysis after controlling for various confounders both at the individual and area-levels (i.e., concentrated disadvantage) in non-western countries.</p> <p>Methods</p> <p>We conducted a cross-sectional survey from December 2010 to April 2011 in Seoul, South Korea. The target population included respondents aged 25 years and older who have resided in the same administrative area since 2008. The final sample for this study consisted of 4,730 respondents within all 25 of Seoul's administrative areas.</p> <p>Results</p> <p>In our final model, individual-level social capital, including network sources (OR = 1.23; 95% CI = 1.11-1.37) and organizational participation (OR = 2.55; 95% CI = 2.11-3.08) was positively associated with good/very good health. Interestingly, the individual × area organizational participation cross-level interaction was negatively associated with good/very good health (OR = 0.40; 95% CI = 0.32-0.50), indicating that in areas with higher organizational participation, individuals with high organizational participation were less likely to report good/very good health when compared to low organizational participation individuals.</p> <p>Conclusion</p> <p>Our study provides evidence that individual-level social capital is associated with self-reported health, even after controlling for both individual and area-level confounders. Although this study did not find significant relationships between area-level organizational participation and self-reported health, this study found the cross-level interaction for social capital. Hence, in areas with lower organizational participation, the probability of reporting good/very good health is higher for individuals with high organizational participation than individuals with low organizational participation. This study, albeit tentatively, suggests that policy makers should focus upon social capital when making policies which aim to enhance one's health.</p

    Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat

    Get PDF
    Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia

    Calcium Uptake and Release through Sarcoplasmic Reticulum in the Inferior Oblique Muscles of Patients with Inferior Oblique Overaction

    Get PDF
    We characterized and compared the characteristics of Ca2+ movements through the sarcoplasmic reticulum of inferior oblique muscles in the various conditions including primary inferior oblique overaction (IOOA), secondary IOOA, and controls, so as to further understand the pathogenesis of primary IOOA. Of 15 specimens obtained through inferior oblique myectomy, six were from primary IOOA, 6 from secondary IOOA, and the remaining 3 were controls from enucleated eyes. Ryanodine binding assays were performed, and Ca2+ uptake rates, calsequestrins and SERCA levels were determined. Ryanodine bindings and sarcoplasmic reticulum Ca2+ uptake rates were significantly decreased in primary IOOA (p<0.05). Western blot analysis conducted to quantify calsequestrins and SERCA, found no significant difference between primary IOOA, secondary IOOA, and the controls. Increased intracellular Ca2+ concentration due to reduced sarcoplasmic reticulum Ca2+ uptake may play a role in primary IOOA

    Role of Myokines in Regulating Skeletal Muscle Mass and Function

    Get PDF
    Loss of skeletal muscle mass and strength has recently become a hot research topic with the extension of life span and an increasingly sedentary lifestyle in modern society. Maintenance of skeletal muscle mass is considered an essential determinant of muscle strength and function. Myokines are cytokines synthesized and released by myocytes during muscular contractions. They are implicated in autocrine regulation of metabolism in the muscle as well as in the paracrine/endocrine regulation of other tissues and organs including adipose tissue, the liver, and the brain through their receptors. Till date, secretome analysis of human myocyte culture medium has revealed over 600 myokines. In this review article, we summarize our current knowledge of major identified and characterized myokines focusing on their biological activity and function, particularly in muscle mass and function
    corecore