1,629 research outputs found

    Remark on Remnant and Residue Entropy with GUP

    Full text link
    In this article, close to the Planck scale, we discuss on the remnant and residue entropy from a Rutz-Schwarzschild black hole in the frame of Finsler geometry. Employing the corrected Hamilton-Jacobi equation, the tunneling radiation of a scalar particle is presented, and the revised tunneling temperature and revised entropy are also found. Taking into account generalized uncertainty principle (GUP), we analyze the remnant stability and residue entropy based on thermodynamic phase transition. In addition, the effects of the Finsler perturbation parameter, GUP parameter and angular momentum parameter on remnant and residual entropy are also discussed.Comment: 18 pages, 5 figures, 2 table

    (E)-N′-(2,5-Dimethoxy­benzyl­idene)-3,4-dihydroxy­benzohydrazide monohydrate

    Get PDF
    In the title compound, C16H16N2O5·H2O, the dihedral angle between the two benzene rings is 25.9 (1)°. Intra­molecular O—H⋯O and N—H⋯O hydrogen bonds are observed. In the crystal, the components are linked into a three-dimensional network by O—H⋯O and O—H⋯(O,O) hydrogen bonds

    Poly[[aqua­(μ2-oxalato)(μ2-2-oxido­pyridinium-3-carboxylato)holmium(III)] monohydrate]

    Get PDF
    In the title complex, {[Ho(C2O4)(C6H4NO3)(H2O)]·(H2O)}n, the HoIII ion is coordinated by three O atoms from two 2-oxidopyridinium-3-carboxylate ligands, four O atoms from two oxalate ligands and one water mol­ecule in a distorted bicapped trigonal-prismatic geometry. The 2-oxidopyridin­ium-3-carboxylate and oxalate ligands link the HoIII ions into a layer in (100). These layers are further connected by inter­molecular O—H⋯O hydrogen bonds involving the coordinated water mol­ecules to assemble a three-dimensional supra­molecular network. The uncoordin­ated water mol­ecule is involved in N—H⋯O and O—H⋯O hydrogen bonds within the layer

    Poly[bis­(4,4′-bipyridine)(μ3-4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ato)iron(II)]

    Get PDF
    In the polymeric title complex, [Fe(C16H8O8)(C10H8N2)2]n, the iron(II) cation is coordinated by four O atoms from three different 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands and two N atoms from two 4,4′-bipyridine ligands in a distorted octa­hedral geometry. The 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands bridge adjacent cations, forming chains parallel to the c axis. The chains are further connected by inter­molecular O—H⋯N hydrogen bonds, forming two-dimensional supra­molecular layers parallel to (010)

    Coronavirus Spike Protein Inhibits Host Cell Translation by Interaction with eIF3f

    Get PDF
    In response to viral infection, the expression of numerous host genes, including predominantly a number of proinflammatory cytokines and chemokines, is usually up-regulated at both transcriptional and translational levels. It was noted that in cells infected with coronavirus, transcription and translation of some of these genes were differentially induced. Drastic induction of their expression at the transcriptional level was observed in cells infected with coronavirus. However, induction of the same genes at the translational level was usually found to be minimal to moderate. To investigate the underlying mechanisms, yeast two-hybrid screen was carried out using SARS-CoV proteins as baits, revealing that a subunit of the eukaryotic initiation factor 3 (eIF3), eIF3f, may interact with the N-terminal region of the SARS-CoV spike (S) protein. This interaction was subsequently confirmed by co-immunoprecipitation and immunofluorescent staining. Meanwhile, parallel experiments confirmed that eIF3f could also interact with the S protein of another coronavirus, the avian coronavirus infectious bronchitis virus (IBV). These interactions led to the inhibition of translation of a reporter gene in both in vitro expression system and intact cells. Interestingly, IBV-infected cells stably expressing a Flag-tagged eIF3f showed much higher translation of IL-6 and IL-8, suggesting that the interaction between coronavirus S protein and eIF3f plays a functional role in controlling the expression of host genes, especially genes that are induced during coronavirus infection cycles. This study reveals a novel mechanism exploited by coronavirus to regulate viral pathogenesis

    Numerical simulation of dental resurfacing of a feldspar porcelain with coarse diamond burs

    Get PDF
    Dental bioceramics are more and more attractive to both dentists and patients due to their unique biocompatibility and esthetics; they can be fabricated efficiently using chair-side CAD/CAM dental systems. However, the failure rate of ceramic prostheses is noticeable high. The major clinical failure mode lies in surface and subsurface damage in the ceramic prostheses due to their inherent brittleness. In clinical practice, ceramic prostheses are intraorally adjusted and resurfaced using dental handpieces/burs for marginal and occlusal fit. The clinical adjustments using abrasive burs produce surface and subsurface damage in prostheses. This paper will address this issue via numerical simulation. Finite element analysis was utilised to model the dental resurfacing of a feldspar porcelain with coarse diamond burs and to predict the degrees of subsurface damage of the porcelain prostheses

    Sensing performance of Nanocrystalline Graphite Based Humidity Sensors

    Get PDF
    Environmental sensors play a crucial role in a wide range of applications. Amongst them, humidity sensors that are stable and operational in harsh environments are incredibly important for process control and monitoring. Nanocrystalline graphite (NCG) is a type of carbon-based thin film material. Previous work has shown that NCG has excellent mechanical properties and is able to withstand high radiation doses. The granular structure of the NCG film makes it a good candidate for humidity sensing as the film consists of conductive graphitic grains with a high density of sp2 bonds and amorphous grain boundaries with high resistivity, adsorption of water molecule onto the film forms conductive pathways between grains through the Grotthuss mechanism which lowers the resistance of the film by a measurable amount. Here we report for the first time, a working humidity sensor with linear response, fabricated using NCG as the sensing material for harsh, real-world environments, which include exposure to weak acids via rainfall, UV radiation, mechanical wear, and high humidity environments. The calculated sensitivity of the best-fabricated sensor is S = 0.0334%, with a maximum resistance change of -4.4 kOhms, over the range of 15% RH to 85% RH. The response time of the sensor is 20ms with the current measurement setup. The baseline resistance value of the sensor at 15% RH is 210 kOhms. The sensor has the potential to be used as a humidity sensor for harsh environments due to the chemical, thermal and mechanical stability of the NCG film
    corecore