Dental bioceramics are more and more attractive to both dentists and patients due to their unique biocompatibility and esthetics; they can be fabricated efficiently using chair-side CAD/CAM dental systems. However, the failure rate of ceramic prostheses is noticeable high. The major clinical failure mode lies in surface and subsurface damage in the ceramic prostheses due to their inherent brittleness. In clinical practice, ceramic prostheses are intraorally adjusted and resurfaced using dental handpieces/burs for marginal and occlusal fit. The clinical adjustments using abrasive burs produce surface and subsurface damage in prostheses. This paper will address this issue via numerical simulation. Finite element analysis was utilised to model the dental resurfacing of a feldspar porcelain with coarse diamond burs and to predict the degrees of subsurface damage of the porcelain prostheses