8,324 research outputs found

    Noise characteristics and instabilities of long Josephson junctions

    Get PDF
    Journal ArticleIn a magnetic field, current biased long Josephson junctions exhibit the dynamics of fluxon motion which are affected by fluctuations. These consist of telegraph noise at voltage steps and instabilities due to chaotic behavior. Results on long junctions with McCumber number fic ranging from 10 to 100 show such behavior. The telegraph noise is driven by thermal fluctuations. Modeling of our junctions using a perturbed sine-Gordon equation shows the chaotic regions and the periodic ones

    Strong and broadly tunable plasmon resonances in thick films of aligned carbon nanotubes

    Full text link
    Low-dimensional plasmonic materials can function as high quality terahertz and infrared antennas at deep subwavelength scales. Despite these antennas' strong coupling to electromagnetic fields, there is a pressing need to further strengthen their absorption. We address this problem by fabricating thick films of aligned, uniformly sized carbon nanotubes and showing that their plasmon resonances are strong, narrow, and broadly tunable. With thicknesses ranging from 25 to 250 nm, our films exhibit peak attenuation reaching 70%, quality factors reaching 9, and electrostatically tunable peak frequencies by a factor of 2.3x. Excellent nanotube alignment leads to the attenuation being 99% linearly polarized along the nanotube axis. Increasing the film thickness blueshifts the plasmon resonators down to peak wavelengths as low as 1.4 micrometers, promoting them to a new near-infrared regime in which they can both overlap the S11 nanotube exciton energy and access the technologically important infrared telecom band.Comment: 19 pages, 5 figures, main text followed by supporting informatio

    Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation

    Get PDF
    SummaryThe metabolic demands and synthetic capacity of the lactating mammary gland exceed that of any other tissue, thereby providing a useful paradigm for understanding the developmental regulation of cellular metabolism. By evaluating mice bearing targeted deletions in Akt1 or Akt2, we demonstrate that Akt1 is specifically required for lactating mice to synthesize sufficient quantities of milk to support their offspring. Whereas cellular proliferation, differentiation, and apoptosis are unaffected, loss of Akt1 disrupts the coordinate regulation of metabolic pathways that normally occurs at the onset of lactation. This results in a failure to upregulate glucose uptake, Glut1 surface localization, lipid synthesis, and multiple lipogenic enzymes, as well as a failure to downregulate lipid catabolic enzymes. These findings demonstrate that Akt1 is required in an isoform-specific manner for orchestrating many of the developmental changes in cellular metabolism that occur at the onset of lactation and establish a role for Akt1 in glucose metabolism

    Heavy Quasi-Particle in the Two-Orbital Hubbard Model

    Full text link
    The two-orbital Hubbard model with the Hund coupling is investigated in a metallic phase close to the Mott insulator. We calculate the one-particle spectral function and the optical conductivity within dynamical mean field theory, for which the effective impurity problem is solved by using the non-crossing approximation. For a metallic system close to quarter filling, a heavy quasi-particle band is formed by the Hubbard interaction, the effective mass of which is not so sensitive to the orbital splitting and the Hund coupling. In contrast, a heavy quasi-particle band near half filling disappears in the presence of the orbital splitting, but is induced again by the introduction of the Hund coupling, resulting in a different type of heavy quasi-particles.Comment: 6page, 7eps figures, to appear in J. Phys. Soc. Jp

    Planetary Nebulae as standard candles XI. Application to Spiral Galaxies

    Get PDF
    We report the results of an [O III] lambda 5007 survey for planetary nebulae (PN) in three spiral galaxies: M101 (NGC 5457), M51 (NGC 5194/5195) and M96 (NGC 3368). By comparing on-band/off-band [O III] lambda 5007 images with images taken in H-alpha and broadband R, we identify 65, 64 and 74 PN candidates in each galaxy, respectively. From these data, an adopted M31 distance of 770 kpc, and the empirical planetary nebula luminosity function (PNLF), we derive distances to M101, M51, and M96 of 7.7 +/- 0.5, 8.4 +/- 0.6, and 9.6 +/- 0.6 Mpc. These observations demonstrate that the PNLF technique can be successfully applied to late-type galaxies, and provide an important overlap between the Population I and Population II distance scales. We also discuss some special problems associated with using the PNLF in spiral galaxies, including the effects of dust and the possible presence of [O III] bright supernova remnants.Comment: 38 pages, TeX, with tables included but not figures. Uses epsf.tex and kpnobasic.tex. To be published in the Astophysical Journal. Full paper is available at http://www.astro.psu.edu/users/johnf/Text/research.htm

    Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice

    Get PDF
    Locomotor function, mediated by lumbar neural circuitry, is modulated by descending spinal pathways. Spinal cord injury (SCI) interrupts descending projections and denervates lumbar motor neurons (MNs). We previously reported that retrogradely transported neurotrophin-3 (NT-3) to lumbar MNs attenuated SCI-induced lumbar MN dendritic atrophy and enabled functional recovery after a rostral thoracic contusion. Here we functionally dissected the role of descending neural pathways in response to NT-3-mediated recovery after a T9 contusive SCI in mice. We find that residual projections to lumbar MNs are required to produce leg movements after SCI. Next, we show that the spared descending propriospinal pathway, rather than other pathways (including the corticospinal, rubrospinal, serotonergic, and dopaminergic pathways), accounts for NT-3-enhanced recovery. Lastly, we show that NT-3 induced propriospino-MN circuit reorganization after the T9 contusion via promotion of dendritic regrowth rather than prevention of dendritic atrophy

    Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    Get PDF
    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding

    PTEN protein loss by immunostaining: Analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients

    Get PDF
    PURPOSE: Analytically validated assays to interrogate biomarker status in clinical samples are crucial for personalized medicine. PTEN is a tumor suppressor commonly inactivated in prostate cancer that has been mechanistically linked to disease aggressiveness. Though deletion of PTEN, as detected by cumbersome fluorescence in situ hybridization (FISH) spot counting assays, is associated with poor prognosis, few studies have validated immunohistochemical (IHC) assays to determine whether loss of PTEN protein is associated with unfavorable disease. EXPERIMENTAL DESIGN: PTEN IHC was validated by employing formalin fixed and paraffin embedded isogenic human cell lines containing or lacking intact PTEN alleles. PTEN IHC was 100% sensitive and 97.8% specific for detecting genomic alterations in 58 additional cell lines. PTEN protein loss was then assessed on 376 prostate tumor samples, and PTEN FISH or high resolution SNP microarray analysis was performed on a subset of these cases. RESULTS: PTEN protein loss, as assessed as a dichotomous IHC variable, was highly reproducible, correlated strongly with adverse pathologic features (e.g. Gleason score and pathological stage), detected between 75% and 86% of cases with PTEN genomic loss, and was found at times in the absence of apparent genomic loss. In a cohort of 217 high risk surgically treated patients, PTEN protein loss was associated with decreased time to metastasis. CONCLUSIONS: These studies validate a simple method to interrogate PTEN status in clinical specimens and support the utility of this test in future multi-center studies, clinical trials and ultimately perhaps for routine clinical care
    • …
    corecore