3,603 research outputs found

    Wind Energy in Egypt: Economic Feasibility for Cairo

    Get PDF
    Motivated by the rise of the electricity tariffs applied on industrial customer and the frequent electricity cut offs recently experienced in Egypt, this paper assesses the economic feasibility of installing a stand alone wind energy technology by an industrial customer who seeks to reduce his dependency on the national grid. For this purpose, the wind energy potential at the wind regime of Cairo was chosen to be assessed using half an hour wind speed data for a full one-year period (2009). The Weibull parameters of the wind speed distribution function were estimated by employing the maximum likelihood approach. The estimation revealed that Cairo has poor wind resources. Despite the poor resources, the financial analysis has shown that under certain parameters the wind project can prove to be financially viable. Thus harnessing wind energy through stand alone systems can help in meeting the industries electric power needs.Renewable energy, wind resources, Weibull distribution, electricity

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    New techniques for Arabic document classification

    Get PDF
    Text classification (TC) concerns automatically assigning a class (category) label to a text document, and has increasingly many applications, particularly in the domain of organizing, for browsing in large document collections. It is typically achieved via machine learning, where a model is built on the basis of a typically large collection of document features. Feature selection is critical in this process, since there are typically several thousand potential features (distinct words or terms). In text classification, feature selection aims to improve the computational e ciency and classification accuracy by removing irrelevant and redundant terms (features), while retaining features (words) that contain su cient information that help with the classification task. This thesis proposes binary particle swarm optimization (BPSO) hybridized with either K Nearest Neighbour (KNN) or Support Vector Machines (SVM) for feature selection in Arabic text classi cation tasks. Comparison between feature selection approaches is done on the basis of using the selected features in conjunction with SVM, Decision Trees (C4.5), and Naive Bayes (NB), to classify a hold out test set. Using publically available Arabic datasets, results show that BPSO/KNN and BPSO/SVM techniques are promising in this domain. The sets of selected features (words) are also analyzed to consider the di erences between the types of features that BPSO/KNN and BPSO/SVM tend to choose. This leads to speculation concerning the appropriate feature selection strategy, based on the relationship between the classes in the document categorization task at hand. The thesis also investigates the use of statistically extracted phrases of length two as terms in Arabic text classi cation. In comparison with Bag of Words text representation, results show that using phrases alone as terms in Arabic TC task decreases the classification accuracy of Arabic TC classifiers significantly while combining bag of words and phrase based representations may increase the classification accuracy of the SVM classifier slightly

    Overlapping Community Structure in Co-authorship Networks: a Case Study

    Full text link
    Community structure is one of the key properties of real-world complex networks. It plays a crucial role in their behaviors and topology. While an important work has been done on the issue of community detection, very little attention has been devoted to the analysis of the community structure. In this paper, we present an extensive investigation of the overlapping community network deduced from a large-scale co-authorship network. The nodes of the overlapping community network represent the functional communities of the co-authorship network, and the links account for the fact that communities share some nodes in the co-authorship network. The comparative evaluation of the topological properties of these two networks shows that they share similar topological properties. These results are very interesting. Indeed, the network of communities seems to be a good representative of the original co-authorship network. With its smaller size, it may be more practical in order to realize various analyses that cannot be performed easily in large-scale real-world networks.Comment: 2014 7th International Conference on u- and e- Service, Science and Technolog
    corecore