6 research outputs found

    Multiparameter actuation of a neutrally-stable shell: a flexible gear-less motor

    Full text link
    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multiparameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disk, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, owning a continuous manifold of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fiber-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully non-linear inextensible uniform-curvature shell model. We report on the fabrication, identification, and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a "gear-less motor", which is, in reality, a precession of the axis of principal curvature.Comment: 20 pages, 9 figure

    Contrôle de forme de coques multistables

    Get PDF
    Un disque mince isotrope soumis à des courbures inélastiques sphériques et uniformes possède une infinité de configurations cylindriques identiques et stables. Dans ce travail, on étudie la multistabilité d'une telle structure et la manière de contrôler le passage d'une configuration stable à l'autre. Sur la base du modèle non-linéaire de coques minces de Von Kármán, on montre que le fait de générer des courbures inélastiques dans au moins trois directions permet le contrôle de la courbure de la coque à 360. Les résultats sont validés par des simulations aux éléments finis via le code Abaqus

    Shape control of multistable shells : modeling, optimisation and implementation

    No full text
    Ces travaux de thèse sont basés principalement sur le phénomène de multistabilité des structures minces de type plaques et coques ainsi que quelques applications associées. Les travaux sont divisés en deux parties. La première partie a pour objet l’étude théorique, numérique et expérimentale de la multistabilité des coques minces orthotropes peu profondes à courbures uniformes. On montre notamment qu’une telle coque, lorsqu’elle est soumise à la combinaison d’une courbure initiale et d’une précontrainte suffisamment élevées, possède jusqu’à trois configurations stables vis-à-vis des propriétés matériaux. Dans un premier temps, nous proposons des critères de conception et fabrication de coques multistables allant jusqu’à la tristabilité, validés numériquement et expérimentalement. Ensuite, nous appliquons ces critères à la conception et à la fabrication de coques multistables cylindriques dont la différence de niveau énergétique entre les deux états stables est minime. Sur ce support, la deuxième partie est consacrée à des applications exploitant la bistabilité des coques cylindriques minces à faible différence énergétique. Nous effectuons tout d’abord une application au contrôle de forme via l’utilisation de matériaux actifs que l’on attache à la structure. Cela comprend une première phase théorique de conception de la structure et de la loi d’actionnement, et une seconde phase de mise en œuvre expérimentale. Ensuite, nous étudions théoriquement et expérimentalement les propriétés de dynamique non-linéaire de ce type de coques dans le but de mettre en évidence les modes d’oscillations intrinsèques à une source d’excitation externe. Enfin, nous proposons une application à la récupération d’énergie vibratoire non-linéaire de coques multistables cylindriques métalliques par voie piézoélectrique.This work is essentially based on the phenomenon of multistability of thin structures as plates and shells and some associated applications. The work is divided in two parts. The first part aims to study theoretically, numerically and experimentally the multistability of thin orthotropic shallow shells with uniform curvature. We show notably that such a shell, when submitted to the combination of initial curvature and pre-stresses sufficiently high, possesses up to three stable states towards the choice of the material. First, we propose criteria to design and manufacture multistable shells up to tristability ; this work is validated by finit element simulations and experiments. After, we apply those criteria to the design and manufacture ofcylindrical multistable shells for which the energetic gap between stable states is minimal. The second part is dedicated to direct applications of bistability of thin cylindrical bistable shells with low energetic gap. We first propose an application on shape control via the use of active materials which we bond on the structure. This includes a first phase of theoretical design of both the structure and the actuation law, and a second phase of experimental demonstration. After, we study both theoretically and experimentally the non-linear dynamic properties of such structures with the aim to highlight the different modes of oscillations intrinsic to an external excitation source. Finally, we propose an application to non-linear broadband energy harvesting from vibrations based on multistable piezoelectric excited shells

    Contrôle de forme de coques multistables : modélisation, optimisation et mise en œuvre

    No full text
    This work is essentially based on the phenomenon of multistability of thin structures as plates and shells and some associated applications. The work is divided in two parts. The first part aims to study theoretically, numerically and experimentally the multistability of thin orthotropic shallow shells with uniform curvature. We show notably that such a shell, when submitted to the combination of initial curvature and pre-stresses sufficiently high, possesses up to three stable states towards the choice of the material. First, we propose criteria to design and manufacture multistable shells up to tristability ; this work is validated by finit element simulations and experiments. After, we apply those criteria to the design and manufacture ofcylindrical multistable shells for which the energetic gap between stable states is minimal. The second part is dedicated to direct applications of bistability of thin cylindrical bistable shells with low energetic gap. We first propose an application on shape control via the use of active materials which we bond on the structure. This includes a first phase of theoretical design of both the structure and the actuation law, and a second phase of experimental demonstration. After, we study both theoretically and experimentally the non-linear dynamic properties of such structures with the aim to highlight the different modes of oscillations intrinsic to an external excitation source. Finally, we propose an application to non-linear broadband energy harvesting from vibrations based on multistable piezoelectric excited shells.Ces travaux de thèse sont basés principalement sur le phénomène de multistabilité des structures minces de type plaques et coques ainsi que quelques applications associées. Les travaux sont divisés en deux parties. La première partie a pour objet l’étude théorique, numérique et expérimentale de la multistabilité des coques minces orthotropes peu profondes à courbures uniformes. On montre notamment qu’une telle coque, lorsqu’elle est soumise à la combinaison d’une courbure initiale et d’une précontrainte suffisamment élevées, possède jusqu’à trois configurations stables vis-à-vis des propriétés matériaux. Dans un premier temps, nous proposons des critères de conception et fabrication de coques multistables allant jusqu’à la tristabilité, validés numériquement et expérimentalement. Ensuite, nous appliquons ces critères à la conception et à la fabrication de coques multistables cylindriques dont la différence de niveau énergétique entre les deux états stables est minime. Sur ce support, la deuxième partie est consacrée à des applications exploitant la bistabilité des coques cylindriques minces à faible différence énergétique. Nous effectuons tout d’abord une application au contrôle de forme via l’utilisation de matériaux actifs que l’on attache à la structure. Cela comprend une première phase théorique de conception de la structure et de la loi d’actionnement, et une seconde phase de mise en œuvre expérimentale. Ensuite, nous étudions théoriquement et expérimentalement les propriétés de dynamique non-linéaire de ce type de coques dans le but de mettre en évidence les modes d’oscillations intrinsèques à une source d’excitation externe. Enfin, nous proposons une application à la récupération d’énergie vibratoire non-linéaire de coques multistables cylindriques métalliques par voie piézoélectrique

    Chaotic and regular dynamics of a morphing shell with a vanishing-stiffness mode

    No full text
    Thin elastic shells are almost inextensible but easy to bend. In the presence of prestresses, geometric frustrations can produce complex elastic energetic landscapes, which have been tailored for the design of morphing structures with multiple stable equilibria or neutrally stable manifolds. We show that the coexistence of stiff and floppy modes leads to unexploited dynamical features. We build a neutrally stable cylindrical shell that under dynamical excitation alternates a chaotic behaviour with a surprisingly regular regimes with a continuous precession of the curvature axis at a constant speed. We explain the experimental findings with a minimal model, showing how the intriguing dynamics is due to the subtle coupling between the prestress, geometrical nonlinearity, material anisotropy and inertial effects. Our results shed a new light on morphing structures dynamics and can be exploited in engineering applications such as energy harvesting

    Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate

    No full text
    This research aims to develop new high-energy dense ordinary- and nano-energetic composites based on hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and nitrated cellulose and nanostructured nitrocellulose (NC and NMCC). The elaborated energetic formulations (HNTO/NC and HNTO/NMCC) were fully characterized in terms of their chemical compatibility, morphology, thermal stability, and energetic performance. The experimental findings implied that the designed HNTO/NC and HNTO/NMCC formulations have good compatibilities with attractive characteristics such as density greater than 1.780 g/cm3 and impact sensitivity around 6 J. Furthermore, theoretical performance calculations (EXPLO5 V6.04) displayed that the optimal composition of the as-prepared energetic composites yielded excellent specific impulses and detonation velocities, which increased from 205.7 s and 7908 m/s for HNTO/NC to 209.6 s and 8064 m/s for HNTO/NMCC. Moreover, deep insight on the multi-step kinetic behaviors of the as-prepared formulations was provided based on the measured DSC data combined with isoconversional kinetic methods. It is revealed that both energetic composites undergo three consecutive exothermic events with satisfactory activation energies in the range of 139–166 kJ/mol for HNTO/NC and 119–134 kJ/mol for HNTO/NMCC. Overall, this research displayed that the new developed nanoenergetic composite based on nitrated cellulose nanostructure could serve as a promising candidate for practical applications in solid rocket propellants and composite explosives
    corecore