957 research outputs found
Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence
Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are
analyzed in the first gyrokinetic simulation spanning all scales from the tail
of the MHD range to the electron gyroradius scale. For typical solar wind
parameters at 1 AU, about 30% of the nonlinear energy transfer close to the
electron gyroradius scale is mediated by modes in the tail of the MHD cascade.
Collisional dissipation occurs across the entire kinetic range
. Both mechanisms thus act on multiple coupled scales,
which have to be retained for a comprehensive picture of the dissipation range
in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
Direct multiscale coupling of a transport code to gyrokinetic turbulence codes
Direct coupling between a transport solver and local, nonlinear gyrokinetic
calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D.
thesis, arxiv:0901.2868] is described. The coupling of the microscopic and
macroscopic physics is done within the framework of multiscale gyrokinetic
theory, of which we present the assumptions and key results. An assumption of
scale separation in space and time allows for the simulation of turbulence in
small regions of the space-time grid, which are embedded in a coarse grid on
which the transport equations are implicitly evolved. This leads to a reduction
in computational expense of several orders of magnitude, making
first-principles simulations of the full fusion device volume over the
confinement time feasible on current computing resources. Numerical results
from TRINITY simulations are presented and compared with experimental data from
JET and ASDEX Upgrade plasmas.Comment: 12 pages, 13 figures, invited paper for 2009 APS-DPP meeting,
submitted to Phys. Plasma
A ratio model of perceived speed in the human visual system
The perceived speed of moving images changes over time. Prolonged viewing of a pattern (adaptation) leads to an exponential decrease in its perceived speed. Similarly, responses of neurones tuned to motion reduce exponentially over time. It is tempting to link these phenomena. However, under certain conditions, perceived speed increases after adaptation and the time course of these perceptual effects varies widely. We propose a model that comprises two temporally tuned mechanisms whose sensitivities reduce exponentially over time. Perceived speed is taken as the ratio of these filters' outputs. The model captures increases and decreases in perceived speed following adaptation and describes our data well with just four free parameters. Whilst the model captures perceptual time courses that vary widely, parameter estimates for the time constants of the underlying filters are in good agreement with estimates of the time course of adaptation of direction selective neurones in the mammalian visual system
Transition from collisionless to collisional MRI
Recent calculations by Quataert et al. (2002) found that the growth rates of
the magnetorotational instability (MRI) in a collisionless plasma can differ
significantly from those calculated using MHD. This can be important in hot
accretion flows around compact objects. In this paper we study the transition
from the collisionless kinetic regime to the collisional MHD regime, mapping
out the dependence of the MRI growth rate on collisionality. A kinetic closure
scheme for a magnetized plasma is used that includes the effect of collisions
via a BGK operator. The transition to MHD occurs as the mean free path becomes
short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic
field regime where the Alfv\'en and MRI frequencies are small compared
to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively
collisionless even if , so long as the collision frequency \nu
\ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega
\sqrt{\beta}. The low collisionality regime not only modifies the MRI growth
rate, but also introduces collisionless Landau or Barnes damping of long
wavelength modes, which may be important for the nonlinear saturation of the
MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of
anisotropic pressure closure from drift kinetic equatio
Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX
The gyrokinetic turbulence code GS2 was used to investigate the effects of
plasma beta on linear, collisionless ion temperature gradient (ITG) modes and
trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX)
geometry. Plasma beta affects stability in two ways: through the equilibrium
and through magnetic fluctuations. The first was studied here by comparing ITG
and TEM stability in two NCSX equilibria of differing beta values, revealing
that the high beta equilibrium was marginally more stable than the low beta
equilibrium in the adiabatic-electron ITG mode case. However, the high beta
case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and
electromagnetic ITG and TEM mode growth rate dependencies on temperature
gradient and density gradient were qualitatively similar. The second beta
effect is demonstrated via electromagnetic ITG growth rates' dependency on
GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and
GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure
Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas
This letter presents the first ab initio, fully electromagnetic, kinetic
simulations of magnetized turbulence in a homogeneous, weakly collisional
plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic and
electric-field energy spectra show a break at the ion gyroscale; the spectral
slopes are consistent with scaling predictions for critically balanced
turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of
kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for
magnetic and -1/3 for electric fluctuations). This behavior is also
qualitatively consistent with in situ measurements of turbulence in the solar
wind. Our findings support the hypothesis that the frequencies of turbulent
fluctuations in the solar wind remain well below the ion cyclotron frequency
both above and below the ion gyroscale.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence
A scaling theory of long-wavelength electrostatic turbulence in a magnetised,
weakly collisional plasma (e.g., ITG turbulence) is proposed, with account
taken both of the nonlinear advection of the perturbed particle distribution by
fluctuating ExB flows and of its phase mixing, which is caused by the streaming
of the particles along the mean magnetic field and, in a linear problem, would
lead to Landau damping. It is found that it is possible to construct a
consistent theory in which very little free energy leaks into high velocity
moments of the distribution function, rendering the turbulent cascade in the
energetically relevant part of the wave-number space essentially fluid-like.
The velocity-space spectra of free energy expressed in terms of Hermite-moment
orders are steep power laws and so the free-energy content of the phase space
does not diverge at infinitesimal collisionality (while it does for a linear
problem); collisional heating due to long-wavelength perturbations vanishes in
this limit (also in contrast with the linear problem, in which it occurs at the
finite rate equal to the Landau-damping rate). The ability of the free energy
to stay in the low velocity moments of the distribution function is facilitated
by the "anti-phase-mixing" effect, whose presence in the nonlinear system is
due to the stochastic version of the plasma echo (the advecting velocity
couples the phase-mixing and anti-phase-mixing perturbations). The partitioning
of the wave-number space between the (energetically dominant) region where this
is the case and the region where linear phase mixing wins its competition with
nonlinear advection is governed by the "critical balance" between linear and
nonlinear timescales (which for high Hermite moments splits into two
thresholds, one demarcating the wave-number region where phase mixing
predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published
in JP
Dissipation-Scale Turbulence in the Solar Wind
We present a cascade model for turbulence in weakly collisional plasmas that
follows the nonlinear cascade of energy from the large scales of driving in the
MHD regime to the small scales of the kinetic Alfven wave regime where the
turbulence is dissipated by kinetic processes. Steady-state solutions of the
model for the slow solar wind yield three conclusions: (1) beyond the observed
break in the magnetic energy spectrum, one expects an exponential cut-off; (2)
the widely held interpretation that this dissipation range obeys power-law
behavior is an artifact of instrumental sensitivity limitations; and, (3) over
the range of parameters relevant to the solar wind, the observed variation of
dissipation range spectral indices from -2 to -4 is naturally explained by the
varying effectiveness of Landau damping, from an undamped prediction of -7/3 to
a strongly damped index around -4.Comment: 6 pages, 2 figures, accepted for publication in AIP Conference
Proceedings on "Turbulence and Nonlinear Processes in Astrophysical Plasmas
- …