127 research outputs found
Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading
Shallow water seagrass meadows are frequently damaged by recreational and commercial vessels. Severe injury occurs where propeller scarring, hull groundings and mooring anchors uproot entire plants, excavate sediments, and modify the biophysical properties of the substrate. In climax tropical seagrass communities dominated by Thalassia testudinum (turtlegrass), natural recovery in these disturbances can take several years to decades, and in some environmental conditions may not occur at all. During the recovery period, important ecological services provided by seagrasses are absent or substantially diminished and injured meadows can degrade further in response to natural disturbances, e.g. strong currents and severe storms. To determine if we could accelerate rehabilitation and prevent further degradation of injured turtlegrass meadows, we evaluated a restoration method called “modified compressed succession” using the fast-growing, opportunistic species Halodule wrightii to temporarily substitute ecological services for the slower-growing, climax species T. testudinum. In three experiments we showed statistically significant increases in density and coverage rates of H. wrightii transplants fertilized by wild bird feces as compared to unfertilized treatments. In one experiment, we further demonstrated that regrading excavated injuries with sediment-filled biodegradable tubes in combination with wild bird fertilization and H. wrightii transplants also accelerated seagrass recovery. Specific recommendations are presented for the best practical application of this restoration method in the calcium carbonate-based sediments of south Florida and the wider Caribbean region
Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini.
Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future
Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D
This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software
Recommended from our members
Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D
This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software
Association of Mild to Moderate Chronic Kidney Disease With Venous Thromboembolism Pooled Analysis of Five Prospective General Population Cohorts
BACKGROUND: Recent findings suggest that chronic kidney disease (CKD) may be associated with increased risk of venous thromboembolism (VTE). Given the high prevalence of mild-to-moderate CKD in the general population, in depth analysis of this association is warranted. METHODS AND RESULTS: We pooled individual participant data from five community-based cohorts from Europe (HUNT2, PREVEND and Tromsø study) and United States (ARIC and CHS study) to assess the association of estimated glomerular filtration rate (eGFR), albuminuria and CKD with objectively verified VTE. To estimate adjusted hazard ratios (HRs) for VTE, categorical and continuous spline models were fit using Cox regression with shared-frailty or random-effect meta-analysis. A total of 1,178 VTE events occurred over 599,453 person-years follow-up. Relative to eGFR 100 mL/min/1.73m(2), HRs for VTE were 1.29 (95%CI, 1.04-1.59) for eGFR 75, 1.31 (1.00-1.71) for 60, 1.82 (1.27-2.60) for 45 and 1.95 (1.26-3.01) for 30 mL/min/1.73m(2). Compared with albumin-creatinine ratio (ACR) of 5.0 mg/g, the HRs for VTE were 1.34 (1.04-1.72) for 30 mg/g, 1.60 (1.08-2.36) for 300 mg/g and 1.92 (1.19-3.09) for 1000 mg/g. There was no interaction between clinical categories of eGFR and ACR (P=0.20). The adjusted HR for CKD defined as eGFR <60 mL/min/1.73m(2) or albuminuria ≥30 mg/g (vs. no CKD) was 1.54 (95%CI, 1.15-2.06). Associations were consistent in subgroups according to age, gender, and comorbidities as well as for unprovoked versus provoked VTE. CONCLUSIONS: Both eGFR and ACR are independently associated with increased risk of VTE in the general population, even across the normal eGFR and ACR ranges
MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment Being Conducted
As part of the Materials International Space Station Experiment (MISSE), 41 different polymers are being exposed for approximately 1 1/2 years to the low-Earth-orbit (LEO) environment on the exterior of the International Space Station. MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA, and is the first external experiment on the space station. A similar set of 41 polymers will be flown as part of the Polymer Erosion and Contamination Experiment (PEACE) a shuttle flight experiment that is being developed at the NASA Glenn Research Center collaboratively with the Hathaway Brown School for girls. Therefore, these 41 polymers are collectively called the MISSE PEACE Polymers. The purpose of the MISSE PEACE Polymers experiment is to determine how durable polymers are in the LEO space environment where spacecraft, such as the space station, orbit. Polymers are commonly used as spacecraft materials because of their desirable properties such as good flexibility, low density, and certain electrical properties or optical properties (such as a low solar absorptance and high thermal emittance). Two examples of the use of polymers on the exterior of spacecraft exposed to the space environment include metalized Teflon FEP (fluorinated ethylene propylene, DuPont) thermal control materials on the Hubble Space Telescope, and polyimide Kapton (DuPont) solar array blankets
Rehydration Data for the Materials International Space Station Experiment (MISSE) Polymer Films
Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. Forty thin film polymer and pyrolytic graphite samples, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the ISS for nearly four years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2) mission. The purpose of the MISSE 2 PEACE Polymers experiment was to determine the atomic oxygen (AO) erosion yield (E(sub y), volume loss per incident oxygen atom) of a wide variety of polymers exposed to the LEO space environment. The Ey values were determined based on mass loss measurements. Because many polymeric materials are hygroscopic, the pre-flight and post-flight mass measurements were obtained using dehydrated samples. To maximize the accuracy of the mass measurements, obtaining dehydration data for each of the polymers was desired to ensure that the samples were fully dehydrated before weighing. A comparison of dehydration and rehydration data showed that rehydration data mirrors dehydration data, and is easier and more reliable to obtain. Tests were also conducted to see if multiple samples could be dehydrated and weighed sequentially. Rehydration curves of 43 polymers and pyrolytic graphite were obtained. This information was used to determine the best pre-flight, and post-flight, mass measurement procedures for the MISSE 2 PEACE Polymers experiment, and for subsequent NASA Glenn Research Center MISSE polymer flight experiments
Recommended from our members
Recruitment, Growth and Mortality of an Antarctic Hexactinellid Sponge, Anoxycalyx joubini
Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future
- …