452 research outputs found

    Robust whole-brain segmentation: Application to traumatic brain injury

    Get PDF
    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to differentiate subjects with the presence of a mass lesion or midline shift from those with diffuse brain injury with 76.0% accuracy. The thalamus, putamen, pallidum and hippocampus are particularly affected. Their involvement predicts TBI disease progression.This work was partially funded under the 7th Framework Programme by the European Commission (http://cordis.europa.eu/ist/, TBIcare: http://www.tbicare.eu/, last accessed: 8 December 2014). The research was further supported by the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. AH is supported by the Department of Health via the NIHR comprehensive BRC award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and Kings College Hospital NHS Foundation Trust. This work was further supported by a Medical Research Council (UK) Program Grant (Acute brain injury: heterogeneity of mechanisms, therapeutic targets and outcome effects [G9439390 ID 65883]), the UK National Institute of Health Research Biomedical Research Centre at Cambridge, the Technology Platform funding provided by the UK Department of Health and an EPSRC Pathways to Impact award. VFJN is supported by a Health Foundation/Academy of Medical Sciences Clinician Scientist Fellowship. DKM is supported by an NIHR Senior Investigator Award. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript

    Influence of Mandrel s Surface on the Mechanical Properties of Joints Produced by Electromagnetic Compression

    Get PDF
    Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for the manufacturing of lightweight structures. Taking conventional interference fits into account, the contact area s influence on the joint s quality seems to be of significance, as e.g. the contact area and the friction coefficient between the joining partners determine an allowed axial load or torsional momentum proportionally. Therefore, different contact area surfaces were prepared by shot peening and different machining operations and strategies. The mandrel s surfaces were prepared by shot peening with glass beads and Al2O3 particles. Alternatively, preparation was done using simultaneous five axis milling, because potential joining partners in lightweight frame structures within the Transregional Collaborative Research Centre SFB/TR10 would be manufactured similarly. After that, the manufactured surfaces were characterized by measuring the surface roughness and using confocal whitelight microscopy. After joining by electromagnetic compression, the influence of different mandrel s surface conditions on the joint s mechanical properties were analyzed by tensile tests. Finally, conclusions and design rules for the manufacturing of joints by electromagnetic compression are given

    First-Principles Studies of Hydrogenated Si(111)--7×\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7×\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Tiagabine induced modulation of oscillatory connectivity and activity match PET-derived, canonical GABA-A receptor distributions

    Get PDF
    As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) plays a crucial role in shaping the frequency and amplitude of oscillations, which suggests a role for GABA in shaping the topography of functional connectivity and activity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) using the GABA transporter 1 (GAT1) blocker, tiagabine (15 mg). In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo. We quantified whole brain activity and functional connectivity in discrete frequency bands. Drug-by-session (2 × 4) analysis of variance in connectivity revealed interaction and main effects. Post-hoc permutation testing of each post-drug recording vs. respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, across 1- 3- and 5- hour recordings following tiagabine only. The same analysis applied to activity revealed significant increases across frontal regions, coupled with reductions in posterior regions, across delta, theta, alpha and beta frequencies. Crucially, the spatial distribution of tiagabine-induced changes overlap with group-averaged maps of the distribution of GABAA receptors, from flumazenil (FMZ-VT) PET, demonstrating a link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. Our results indicate that the relationship between PET receptor distributions and MEG effects warrants further exploration, since elucidating the nature of this relationship may uncover electrophysiologically-derived maps of oscillatory activity as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging

    Wintervoedselgewassen als sleutel tot het herstel van akkervogelpopulaties?

    Get PDF
    Deze studie onderzocht of de achteruitgang van akkervogels in kleinschalige Nederlandse landbouwgebieden tegengegaan kan worden door het vergroten van de voedselbeschikbaarheid voor deze soorten in de winterperiode. De voedselbeschikbaarheid werd experimenteel vergroot in 10 gebieden van ongeveer 100 ha door inzaai van gewasmensgels die niet werden geoogst. Tien gepaarde gebieden met vergelijkbare landschapsstructuur waarin voedselbeschikbaarheid niet werd gemanipuleerd fungeerden als controles. De beschikbaarheid aan zaden, het gebruik van de mengsels door akkervogels, het effect van de mengsels op vogels in de winter en in het broedseizoen werden vervolgens gekwantificeerd om het effect van het vergroten van de voedselbeschikbaarheid vast te stellen

    GABAA receptor mapping in human using non-invasive electrophysiology

    Get PDF
    The non-invasive study of cortical oscillations provides a window onto neuronal processing. Temporal correlation of these oscillations between distinct anatomical regions is considered a marker of functional connectedness. As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) is thought to play a crucial role in shaping the frequency and amplitude of oscillations, which thereby suggests a role for GABA in shaping the topography of functional activity and connectivity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) through oral administration of the GABA transporter 1 (GAT1) blocker tiagabine (15 mg). We show that the spatial distribution of tiagabine-induced activity changes, across the brain, corresponds to group-average flumazenil PET maps of GABAA receptor distribution. In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy male individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo pill. Using leakage-corrected amplitude envelope correlations (AECs), we quantified the functional connectivity in discrete frequency bands across the whole brain, using the 90-region Automatic Anatomical Labelling atlas (AAL90), as well as quantifying the average oscillatory activity across the brain. Analysis of variance in connectivity using a drug-by-session (2×4) design revealed interaction effects, accompanied by main effects of drug and session. Post-hoc permutation testing of each post-drug recording against the respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, and across 1- 3- and 5- hour recordings following tiagabine, but not placebo. The same analysis applied to activity, across the brain, also revealed a significant interaction, with post-hoc permutation testing demonstrating significant increases in activity across frontal regions, coupled with reductions in activity in posterior regions, across the delta, theta, alpha and beta frequency bands. Crucially, we show that the spatial distribution of tiagabine-induced changes in oscillatory activity overlap significantly with group-averaged maps of the estimated distribution of GABAA receptors, derived from scaled flumazenil volume-of-distribution (FMZ-VT) PET, hence demonstrating a possible mechanistic link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. We therefore propose that electrophysiologically-derived maps of oscillatory connectivity and activity can be used as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging at the group level, providing direct measures of target engagement and pharmacodynamics

    Evaluation of Nomacopan for Treatment of Bullous Pemphigoid:A Phase 2a Nonrandomized Controlled Trial

    Get PDF
    Importance: Bullous pemphigoid is a difficult-to-treat autoimmune blistering skin disease that predominantly affects older adults and is associated with an increased mortality rate. Objective: To examine the safety and therapeutic potential of nomacopan, an inhibitor of leukotriene B4and complement C5, in patients with bullous pemphigoid. Design, Setting, and Participants: This multicenter, single-group, phase 2a nonrandomized controlled trial was conducted in the dermatology departments of universities in the Netherlands and Germany. Participants were enrolled between September 2018 and April 2020. Older adult patients (aged ≥55 years) with mild to moderate, new-onset or relapsing bullous pemphigoid were recruited into the study. Interventions: Patients received nomacopan, 90 mg, subcutaneously on day 1 and 30 mg subcutaneously daily until day 42. Main Outcomes and Measures: The primary end point was the proportion of patients with grade 3 to 5 (severe) adverse events associated or possibly associated with nomacopan. Secondary end points included mean absolute and percentage changes in the Bullous Pemphigoid Disease Area Index (BPDAI) activity score, the BPDAI pruritus score, and the patient-reported outcome measures Dermatology Life Quality Index (DLQI) and Treatment of Autoimmune Bullous Disease Quality of Life (TABQOL). Results: A total of 9 patients (median [range] age, 75 [55-85] years) with bullous pemphigoid were included in the trial, of whom 5 were women (55.6%). No serious adverse events associated with nomacopan were found. The mean (90% CI) BPDAI activity score decreased from 32.0 (8.7) points on day 1 to 19.6 (9.0) points on day 42. Seven of 9 patients (77.8%) responded to nomacopan with a reduction in the BPDAI activity score of at least 8 points between days 1 and 42; in 3 responders, the reduction was 80% or greater. On day 42, the mean (90% CI) BPDAI pruritus score had decreased by 6.8 (4.6) points from 17.6 (4.0) points on day 1. The mean (90% CI) DLQI score decreased from 11.3 (4.2) points at baseline to 6.4 (3.8) points by day 42, and the mean (90% CI) TABQOL score decreased from 14.6 (5.4) points at baseline to 10.3 (5.0) points on day 42. Conclusions and Relevance: Results of this nonrandomized controlled trial suggest that nomacopan can be well tolerated in older patients with bullous pemphigoid and may have therapeutic benefits for suppressing acute flares of this disease. A larger, placebo-controlled randomized clinical trial is warranted to confirm this safety profile and to establish nomacopan as a new therapeutic option for bullous pemphigoid. Trial Registration: ClinicalTrials.gov Identifier: NCT04035733
    • …
    corecore