1,293 research outputs found
Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions
We present the first three-dimensional (3D) simulations of the large-scale
mixing that takes place in the shock-heated stellar layers ejected in the
explosion of a 15.5 solar-mass blue supergiant star. The outgoing supernova
shock is followed from its launch by neutrino heating until it breaks out from
the stellar surface more than two hours after the core collapse. Violent
convective overturn in the post-shock layer causes the explosion to start with
significant asphericity, which triggers the growth of Rayleigh-Taylor (RT)
instabilities at the composition interfaces of the exploding star. Deep inward
mixing of hydrogen (H) is found as well as fast-moving, metal-rich clumps
penetrating with high velocities far into the H-envelope of the star as
observed, e.g., in the case of SN 1987A. Also individual clumps containing a
sizeable fraction of the ejected iron-group elements (up to several 0.001 solar
masses) are obtained in some models. The metal core of the progenitor is
partially turned over with Ni-dominated fingers overtaking oxygen-rich bullets
and both Ni and O moving well ahead of the material from the carbon layer.
Comparing with corresponding 2D (axially symmetric) calculations, we determine
the growth of the RT fingers to be faster, the deceleration of the dense
metal-carrying clumps in the He and H layers to be reduced, the asymptotic
clump velocities in the H-shell to be higher (up to ~4500 km/s for the
considered progenitor and an explosion energy of 10^{51} ergs, instead of <2000
km/s in 2D), and the outward radial mixing of heavy elements and inward mixing
of hydrogen to be more efficient in 3D than in 2D. We present a simple argument
that explains these results as a consequence of the different action of drag
forces on moving objects in the two geometries. (abridged)Comment: 15 pages, 8 figures, 30 eps files; significantly extended and more
figures added after referee comments; accepted by The Astrophysical Journa
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order
We calculate the imaginary parts of the isoscalar scalar and isovector
electromagnetic form factors of the nucleon up to two-loop order in chiral
perturbation theory. Particular attention is paid on the correct behavior of Im
and Im at the two-pion threshold
in connection with the non-relativistic 1/M-expansion. We recover the
well-known strong enhancement near threshold originating from the nearby
anomalous singularity at . In the
case of the scalar spectral function Im one finds a significant
improvement in comparison to the lowest order one-loop result. Higher order
-rescattering effects are however still necessary to close a remaining
20%-gap to the empirical scalar spectral function. The isovector electric and
magnetic spectral functions Im get additionally enhanced near
threshold by the two-pion-loop contributions. After supplementing their
two-loop results by a phenomenological -meson exchange term one can
reproduce the empirical isovector electric and magnetic spectral functions
fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review
Universality in the Three-Body Problem for 4He Atoms
The two-body scattering length a for 4He atoms is much larger than their
effective range r_s. As a consequence, low-energy few-body observables have
universal characteristics that are independent of the interaction potential.
Universality implies that, up to corrections suppressed by r_s/a, all
low-energy three-body observables are determined by a and a three-body
parameter \Lambda_*. We give simple expressions in terms of a and \Lambda_* for
the trimer binding energy equation, the atom-dimer scattering phase shifts, and
the rate for three-body recombination at threshold. We determine \Lambda_* for
several 4He potentials from the calculated binding energy of the excited state
of the trimer and use it to obtain the universality predictions for the other
low-energy observables. We also use the calculated values for one potential to
estimate the effective range corrections for the other potentials.Comment: 23 pages, revtex4, 6 ps figures, references added, universal
expressions update
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Measurement of the Electric Form Factor of the Neutron at Q^2 = 0.3-0.8 (GeV/c)^2
The electric form factor of the neutron, G_En, has been measured at the Mainz
Microtron by recoil polarimetry in the quasielastic D(e_pol,e'n_pol)p reaction.
Three data points have been extracted at squared four-momentum transfers Q^2 =
0.3, 0.6 and 0.8 (GeV/c)^2. Corrections for nuclear binding effects have been
applied.Comment: 9 pages, 7 figures, 2 tables. Accepted for publication in EPJ
Knowledge management: a review of the field and of OR's contribution
This paper examines the field of knowledge management (KM) and identifies the role of operational research (OR) in key milestones and in KM's future. With the presence of the OR Society journal Knowledge Management Research and Practice and with the INFORMS journal Organization Science, OR may be assumed to have an explicit and a leading role in KM. Unfortunately, the origins and the evidence of recent research efforts do not fully support this assumption. We argue that while OR has been inside many of the milestones there is no explicit recognition of its role and while OR research on KM has considerably increased in the last 5 years, it still forms a rather modest explicit contribution to KM research. Nevertheless, the depth of OR's experience in decision-making models and decision support systems, soft systems with hard systems and in risk management suggests that OR is uniquely placed to lead future KM developments. We suggest that a limiting aspect of whether OR will be seen to have a significant profile will be the extent to which developments are recognized as being informed by OR
Trapped electron coupled to superconducting devices
We propose to couple a trapped single electron to superconducting structures
located at a variable distance from the electron. The electron is captured in a
cryogenic Penning trap using electric fields and a static magnetic field in the
Tesla range. Measurements on the electron will allow investigating the
properties of the superconductor such as vortex structure, damping and
decoherence. We propose to couple a superconducting microwave resonator to the
electron in order to realize a circuit QED-like experiment, as well as to
couple superconducting Josephson junctions or superconducting quantum
interferometers (SQUIDs) to the electron. The electron may also be coupled to a
vortex which is situated in a double well potential, realized by nearby pinning
centers in the superconductor, acting as a quantum mechanical two level system
that can be controlled by a transport current tilting the double well
potential. When the vortex is trapped in the interferometer arms of a SQUID,
this would allow its detection both by the SQUID and by the electron.Comment: 13 pages, 5 figure
- …