5 research outputs found

    Layered double hydroxide based active corrosion protective sealing of plasma electrolytic oxidation/sol-gel composite coating on AA2024

    Get PDF
    This work reports a novel approach for growing layered double hydroxide (LDH) films on any plasma electrolytic oxidation (PEO) coated AA2024 independently of the nature of the PEO coating. The specific PEO coating chosen to carry out this work is considered to be not suitable for direct LDH growth because of phase composition and morphological features. In this paper, we describe a new methodology that consists of covering the PEO coating with a thin layer of aluminum oxide based xerogel as the source of aluminate ions for subsequent in-situ LDH growth. X-ray diffraction (XRD) and scanning electron microscope (SEM) images showed a successful formation of LDHs on the surface. An improvement in terms of active corrosion protection was also demonstrated by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET).publishe

    High-resolution and sensitivity bi-directional x-ray phase contrast imaging using 2D Talbot array illuminators

    Get PDF
    Two-dimensional (2D) Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10–20 keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency, and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding 2D phase sensitivity using unified modulated pattern analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3 µm on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing

    The non-hierarchical, non-uniformly branching topology of a leuconoid sponge aquiferous system revealed by 3D reconstruction and morphometrics using corrosion casting and X-ray microtomography

    No full text
    As sessile filter feeders, sponges rely on a highly efficient fluid transport system. Their physiology depends on efficient water exchange, which is performed by the aquiferous system. This prominent poriferan anatomical character represents a dense network of incurrent and excurrent canals on which we lack detailed 3D models. To overcome this, we investigated the complex leucon-type architecture in the demosponge Tethya wilhelma using corrosion casting, microtomography, and 3D reconstructions. Our integrative qualitative and quantitative approach allowed us to create, for the first time, high-resolution 3D representations of entire canal systems which were used for detailed geometric and morphometric measurements. Canal diameters lack distinct size classes, and bifurcations are non-uniformly ramified. A relatively high number of bifurcations show previously unknown and atypical cross-sectional area ratios. Scaling properties and topological patterns of the canals indicate a more complex overall architecture than previously assumed. As a consequence, it might be more convenient to group canals into functional units rather than hierarchical clusters. Our data qualify the leucon canal system architecture of T. wilhelma as a highly efficient fluid transport system adapted toward minimal flow resistance. Our results and approach are relevant for a better understanding of sponge biology and cultivation techniques

    A new fossil inchworm moth discovered in Miocene Dominican amber (Lepidoptera: Geometridae)

    Full text link
    We report a fossil geometrid moth, a male, virtually complete, preserved in a clear piece of Miocene Dominican amber dating from 19 to 16 Mya. Fore- and hindwings appear partially overlapped, and all body characters are visible externally in dorsal and ventral views, including the outer surface of the valvae of the genitalia. The scale pattern on the wing membrane is preserved, whereas the wing color pattern is not. It belongs to the genus Dolichoneura (Geometridae: Desmobathrinae) and is named Dolichoneura jorelisae Sarto i Monteys, Hausmann, Baixeras and Peñalver sp. n., based on wing features. Because of the poor fossil record of lepidopterans, both in amber and compression rocks, the description of the available well-preserved specimens is of considerable interest for phylogenetic studies. Furthermore, it could also serve for calibrating molecular clocks and for paleobiogeographic inferences

    Heliolitid corals and their competitors: a case study from the Wellin patch reefs, Middle Devonian, Belgium

    No full text
    peer reviewedWellin patch reefs are small Upper Eifelian build?ups within the fine?grained argillaceous limestone of the Hanonet Formation. Whereas the reefs themselves are not well exposed, their fossil assemblage is accessible in the hills near the town of Wellin, approximately 40xA0km SE of Dinant in Belgium. It is especially rich in massive stromatoporoids, heliolitids and other tabulate corals. They exhibit predominantly domical and bulbous morphologies. This paper focuses primarily on the palaeoautoecology of the heliolitid corals and their relationships with other organisms. Cases of mutual overgrowth between heliolitids, other corals and stromatoporids suggest a high degree of competition for space on the reefs, possibly related to the scarcity of hard substrates. Coral and stromatoporoid growth forms, as well as the prevalence of micritic matrix, point to a relatively low energy environment. However, abundant growth interruption surfaces, sediment intercalations and rejuvenations of corals suggest episodically increased hydrodynamic regime and sediment supply. It is inferred that the patch reefs developed in a relatively shallow environment, where the reefal assemblage was regularly affected by storms. Heliolitids exhibited high sediment tolerance and relied on passive sediment removal for survival. They also could regenerate effectively and commonly overgrew their epibionts, after the colony’s growth was hampered by the sediment. This is recorded in extremely abundant growth interruption surfaces, which allow the analysis of the impact of sediment influxes on the heliolitid corals. ? 2021 Lethaia Foundation. Published by John Wiley & Sons Lt
    corecore