700 research outputs found

    CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses.

    Get PDF
    Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID

    Analysis of TACI mutations in CVID & RESPI patients who have inherited HLA B*44 or HLA*B8

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reports have suggested that Common Variable Immunodeficieny (CVID) can present as an autosomal dominant trait dependent on the inheritance of a set of uncommon mutations/alleles of TACI (transmembrane activator and calcium-modulator and cyclophilin ligand interactor) involving exons 3 or 4. Penetrance, however, appears to be incomplete. Among our clinic population, the greatest genetic linkage for CVID is to the major histocompatibility complex (MHC) on chromosome 6. The majority of our patients have inherited HLA *DQ2, *DR7, *DR3(17), *B8, and/or *B44. Of these, HLA*B44 was present in almost half of the patients and was thus the most common susceptibility allele. HLA *B44 was also found to be over-represented among patients who presented to our clinic with adult-onset recurrent sinopulmonary infections (RESPI) and normal serum immunoglobulin levels, a cohort that included first and second degree relatives of patients with CVID. One of the two original reports of the association between TACI and CVID also reported Human Leukocyte Antigen (HLA) haplotypes. Of 13 affected subjects, nine had inherited HLA *B8 and six had inherited HLA B44. This raised the possibility that TACI mutations might synergize with MHC class I alleles to enhance susceptibility to humoral immune deficiency.</p> <p>Methods</p> <p>We identified 63 CVID patients irrespective of HLA status and 13 RESPI patients who had inherited HLA*B44. To evaluate for mutations in the gene for TACI, we PCR amplified and sequenced TACI exons 3 and 4 from these patients.</p> <p>Results</p> <p>Of the 76 patients, eleven proved heterozygous for a previously reported, silent T->G polymorphism [rs35062843] at proline 97 in exon 3. However, none of the 13 RESPI patients and only one of the 63 CVID patients inherited a TACI allele previously associated with CVID. This patient was heterozygous for the TACI A181E allele (exon 4). She did not carry *DQ2, *DR7, *DR3(17), *B8, or *B44.</p> <p>Conclusion</p> <p>These findings suggest that TACI mutations are unlikely to play a critical role in creating susceptibility to CVID among patients with previously recognized MHC class I and class II susceptibility alleles.</p> <p>Supported by NIH/USIDNET N01-AI30070, NIH R21 AI079741 and NIH M01-RR00032</p

    Monozygotic twins concordant for common variable immunodeficiency : strikingly similar clinical and immune profile associated with a polygenic burden

    Get PDF
    Copyright © 2019 Silva, Fonseca, Pereira, Silva, Barbosa, Serra-Caetano, Blanco, Rosmaninho, Pérez-Andrés, Sousa, Raposo, Gama-Carvalho, Victorino, Hammarstrom and Sousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.This work received funding from PAC - PRECISE - LISBOA-01-0145-FEDER-016394, co-funded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa PORTUGAL 2020 and Fundação para a Ciência e a Tecnologia; and UID/BIM/50005/2019, project funded by Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Fundos do Orçamento de Estado. Work in MG-C lab is supported by UID/MULTI/04046/2019 Research Unit grant from FCT, Portugal (to BioISI) and FCT research grant PTDC/BIA-CEL/29257/2017.info:eu-repo/semantics/publishedVersio

    A Regulatory Role for NBS1 in Strand-Specific Mutagenesis during Somatic Hypermutation

    Get PDF
    Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (VH) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the VH genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis

    The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli : a comparison with the traditional gene fusion technology

    Get PDF
    The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.The financial support of the EMBL Heidelberg, Germany and Fundacao para a Ciencia e Tecnologia (FCT), Portugal, is acknowledged: the fellowship SFRH/BD/46482/2008 to Sofia J. Costa and the project PTDC/CVT/103081/2008. The authors wish to acknowledge Anne-Claude Gavin for providing four of the constructs for this study (RVS167, SPO14, YPK1, and YPK2) and Emmanuel Poilpre for the experimental help (both from the EMBL Heidelberg, Germany)

    Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers

    Get PDF
    BACKGROUND: Many breast, pancreatic, colonic and non-small-cell lung carcinoma lines express CEACAM6 (NCA-90) and CEACAM5 (carcinoembryonic antigen, CEA), and antibodies to both can affect tumor cell growth in vitro and in vivo. Here, we compare both antigens as a function of histological phenotype in breast, pancreatic, lung, ovarian, and prostatic cancers, including patient-matched normal, primary tumor, and metastatic breast and colonic cancer specimens. METHODS: Antigen expression was determined by immunohistochemistry (IHC) using tissue microarrays with MN-15 and MN-3 antibodies targeting the A1B1- and N-domains of CEACAM6, respectively, and the MN-14 antibody targeting the A3B3 domain of CEACAM5. IHC was performed using avidin-biotin-diaminobenzide staining. The average score ± SD (0 = negative/8 = highest) for each histotype was recorded. RESULTS: For all tumors, the amount of CEACAM6 expressed was greater than that of CEACAM5, and reflected tumor histotype. In breast tumors, CEACAM6 was highest in papillary > infiltrating ductal > lobular > phyllodes; in pancreatic tumors, moderately-differentiated > well-differentiated > poorly-differentiated tumors; mucinous ovarian adenocarcinomas had almost 3-fold more CEACAM6 than serous ovarian adenocarcinomas; lung adenocarcinomas > squamous tumors; and liver metastases of colonic carcinoma > primary tumors = lymph nodes metastases > normal intestine. However, CEACAM6 expression was similar in prostate cancer and normal tissues. The amount of CEACAM6 in metastatic colon tumors found in liver was higher than in many primary colon tumors. In contrast, CEACAM6 immunostaining of lymph node metastases from breast, colon, or lung tumors was similar to the primary tumor. CONCLUSION: CEACAM6 expression is elevated in many solid tumors, but variable as a function of histotype. Based on previous work demonstrating a role for CEACAM6 in tumor cell migration, invasion and adhesion, and formation of distant metastases (Blumenthal et al., Cancer Res 65: 8809–8817, 2005), it may be a promising target for antibody-based therapy

    Is body size at birth related to circadian salivary cortisol levels in adulthood? Results from a longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hypothesis of fetal origins of adult disease has during the last decades received interest as an explanation of chronic, e.g. cardiovascular, disease in adulthood stemming from fetal environmental conditions. Early programming and enduring dysregulations of the hypothalamic-pituitary-adrenal (HPA axis), with cortisol as its end product, has been proposed as a possible mechanism by which birth weight influence later health status. However, the fetal origin of the adult cortisol regulation has been insufficiently studied. The present study aims to examine if body size at birth is related to circadian cortisol levels at 43 years.</p> <p>Methods</p> <p>Participants were drawn from a prospective cohort study (n = 752, 74.5%). Salivary cortisol samples were collected at four times during one day at 43 years, and information on birth size was collected retrospectively from delivery records. Information on body mass during adolescence and adulthood and on health behavior, medication and medical conditions at 43 years was collected prospectively by questionnaire and examined as potential confounders. Participants born preterm or < 2500 g were excluded from the main analyses.</p> <p>Results</p> <p>Across the normal spectrum, size at birth (birth weight and ponderal index) was positively related to total (area under the curve, AUC) and bedtime cortisol levels in the total sample. Results were more consistent in men than in women. Descriptively, participants born preterm or < 2500 g also seemed to display elevated evening and total cortisol levels. No associations were found for birth length or for the cortisol awakening response (CAR).</p> <p>Conclusions</p> <p>These results are contradictory to previously reported negative associations between birth weight and adult cortisol levels, and thus tentatively question the assumption that only low birth weight predicts future physiological dysregulations.</p
    corecore