42 research outputs found

    Investigations at the Crossroads of Down Syndrome and Alzheimer’s Disease

    Get PDF
    People with Down syndrome (DS) have elevated neuroinflammation early in life and develop neuropathology by the age of twenty. Most individuals with DS go on to develop abnormal dementia and Alzheimer’s disease (AD). This dissertation is focused on biological pathways involved in DS-AD and includes studies in humans with DS and DS mouse models. Locus coeruleus (LC) noradrenergic (NE) neurons decline before other transmitter systems on the path to DS-AD, which leads to increased neuropathology and accelerated memory loss. To investigate the specific roles of LC-NE in DS-AD, designer receptors exclusively activated by designer drugs (DREADDs) were utilized in the Ts65Dn mouse model of DS to selectively stimulate or inhibit LC-NE activity. LC-NE activity modulated neuroinflammation, memory performance, and AD pathology in this mouse model. Altogether these findings implicate the importance of LC-NE function in the context of DS-AD. LC-NE dysfunction may also affect resolution response to neuroinflammation. Insufficient resolution activity was already known to correlate with AD neuropathology in humans and mouse models, but specialized pro-resolving factors have not been evaluated as a therapeutics in DS-AD. In the next portion of my thesis, I developed a novel therapeutic approach to enhance resolution activity in Ts65Dn mice with a pro-resolving mediator, resolvin E1 (RvE1). RvE1 treatment significantly reduced glial activation in the brain and pro-inflammatory cytokines in the periphery of Ts65Dn mice. RvE1 therapy reversed Ts65Dn deficits in memory and cognitive flexibility, which correlated with significant proteomic measures of the inflammatory resolution process. Finally, I investigated blood biomarkers that are relevant to AD including neuron-derived exosome levels of amyloid-beta peptides and phosphorylated-Tau (P-Tau) and serum BDNF levels. These AD biomarkers were already significantly elevated early in childhood with unique trajectories associated with dementia in humans with DS. Serum BDNF levels correlated with exosome P-Tau levels, suggesting an interaction between these two pathways in the development of DS-AD in humans. These data provide novel hope for meaningful therapeutics, to be implemented in early childhood in those with DS and inform both research and clinical perspectives at the crossroads of DS and AD

    Incorporating sequence information into the scoring function: a hidden Markov model for improved peptide identification

    Get PDF
    The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum

    Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome

    Get PDF
    Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer\u27s disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s. Individuals with DS often exhibit working memory deficits coupled with degeneration of the locus coeruleus (LC) norepinephrine (NE) neurons. It is thought that LC degeneration precedes other AD-related neuronal loss, and LC noradrenergic integrity is important for executive function, working memory, and attention. Previous studies have shown that LC-enhancing drugs can slow the progression of AD pathology, including amyloid aggregation, oxidative stress, and inflammation. We have shown that LC degeneration in Ts65Dn mice leads to exaggerated memory loss and neuronal degeneration. We used a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the inert DREADD ligand clozapine-N-oxide. DREADD stimulation of LC-NE enhanced performance in a novel object recognition task and reduced hyperactivity in Ts65Dn mice, without significant behavioral effects in controls. To confirm that the noradrenergic transmitter system was responsible for the enhanced memory function, the NE prodrug l-threo-dihydroxyphenylserine was administered in Ts65Dn and normosomic littermate control mice, and produced similar behavioral results. Thus, NE stimulation may prevent memory loss in Ts65Dn mice, and may hold promise for treatment in individuals with DS and dementia

    Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair: Wnt1/βcatenin injury response regulates cardiac repair

    Get PDF
    Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial–mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury

    Building the Future Therapies for Down Syndrome:The Third International Conference of the T21 Research Society

    Get PDF
    Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21

    Being user-oriented: convergences, divergences, and the potentials for systematic dialogue between disciplines and between researchers, designers, and providers

    Get PDF
    The challenge this panel addresses is drawn from intersecting literature reviews and critical commentaries focusing on: 1) user studies in multiple fields; and 2) the difficulties of bringing different disciplines and perspectives to bear on user‐oriented research, design, and practice. 1 The challenge is that while we have made some progress in collaborative work, we have some distance to go to become user‐oriented in inter‐disciplinary and inter‐perspective ways. The varieties of our approaches and solutions are, as some observers suggest, an increasing cacophony. One major difficulty is that most discussions are solution‐oriented, offering arguments of this sort ‐‐ if only we addressed users in this way… Each solution becomes yet another addition to the cacophony. This panel implements a central approach documented for its utility by communication researchers and long used by communication mediators and negotiators ‐‐ that of focusing not on communication but rather on meta‐communication: communicating about communication. The intent in the context of this panel is to help us refocus attention from too frequent polarizations between alternative solutions to the possibility of coming to understand what is behind the alternatives and where they point to experientially‐based convergences and divergences, both of which might potentially contribute to synergies. The background project for this panel comes from a series of in‐depth interviews with expert researchers, designers, and providers in three field groupings ‐‐ library and information science; human computer interaction/information technology; and communication and media studies. One set of interviews involved 5‐hour focus groups with directors of academic and public libraries serving 44 colleges and universities in central Ohio; the second involved one‐on‐one interviews averaging 50 minutes with 81 nationally‐internationally known experts in the 3 fields, 25‐27 interviews per field. Using Dervin\u27s Sense‐Making Methodological approach to interviewing, the expert interviews of both kinds asked each interviewee: what he/she considered to be the big unanswered questions about users and what explained why the questions have not been answered; and, what he/she saw as hindering versus helping in attempts to communicate about users across disciplinary and perspective gaps. 2 The panel consists of six teams, two from each field. Prior to the panel presentation at ASIST, each team will have read the set of interviews and completed impressionistic essays of what patterns and themes they saw as emerging. At this stage, team members will purposively not homogenize their differences and most will write solo‐authored essays that will be placed on a web‐site accessible to ASIST members prior to the November meeting. In addition, at least one systematic analysis will be completed and available online. 3 At the ASIST panel, each team\u27s leader will present a brief and intentionally provocative impressionist account of what his/her team came to understand about our struggles communicating across fields and perspectives about users. Again, each team will purposively not homogenize its own differences in viewpoints, but rather highlight them as fodder for discussion. A major purpose will be to invite audience members to join the panel in discussion. At least 20 minutes will be left open for this purpose

    Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute erythro- and megakaryoblastic leukaemias are associated with very poor prognoses and the mechanism of blastic transformation is insufficiently elucidated. The murine Graffi leukaemia retrovirus induces erythro- and megakaryoblastic leukaemias when inoculated into NFS mice and represents a good model to study these leukaemias.</p> <p>Methods</p> <p>To expand our understanding of genes specific to these leukaemias, we compared gene expression profiles, measured by microarray and RT-PCR, of all leukaemia types induced by this virus.</p> <p>Results</p> <p>The transcriptome level changes, present between the different leukaemias, led to the identification of specific cancerous signatures. We reported numerous genes that may be potential oncogenes, may have a function related to erythropoiesis or megakaryopoiesis or have a poorly elucidated physiological role. The expression pattern of these genes has been further tested by RT-PCR in different samples, in a Friend erythroleukaemic model and in human leukaemic cell lines.</p> <p>We also screened the megakaryoblastic leukaemias for viral integrations and identified genes targeted by these integrations and potentially implicated in the onset of the disease.</p> <p>Conclusions</p> <p>Taken as a whole, the data obtained from this global gene profiling experiment have provided a detailed characterization of Graffi virus induced erythro- and megakaryoblastic leukaemias with many genes reported specific to the transcriptome of these leukaemias for the first time.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Role of Tau Pathology in Alzheimer’s Disease and Down Syndrome

    No full text
    Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer’s disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a “prion-like” spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords “tau AND seeding AND brain AND down syndrome”. A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain
    corecore