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Wnts are required for cardiogenesis but the role of specific

Wnts in cardiac repair remains unknown. In this report, we

show that a dynamic Wnt1/bcatenin injury response acti-

vates the epicardium and cardiac fibroblasts to promote

cardiac repair. Acute ischaemic cardiac injury upregulates

Wnt1 that is initially expressed in the epicardium and

subsequently by cardiac fibroblasts in the region of injury.

Following cardiac injury, the epicardium is activated organ-

wide in a Wnt-dependent manner, expands, undergoes

epithelial–mesenchymal transition (EMT) to generate car-

diac fibroblasts, which localize in the subepicardial space.

The injured regions in the heart are Wnt responsive as well

and Wnt1 induces cardiac fibroblasts to proliferate and

express pro-fibrotic genes. Disruption of downstream Wnt

signalling in epicardial cells decreases epicardial expan-

sion, EMT and leads to impaired cardiac function and

ventricular dilatation after cardiac injury. Furthermore,

disruption of Wnt/bcatenin signalling in cardiac fibroblasts

impairs wound healing and decreases cardiac performance

as well. These findings reveal that a pro-fibrotic Wnt1/

bcatenin injury response is critically required for preser-

ving cardiac function after acute ischaemic cardiac injury.
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Introduction

Heart disease is a leading cause of mortality and morbidity

and an emerging public health problem in the developing

world. Acute injury to the heart commonly occurs following

occlusion of a culprit blood vessel with subsequent death of

dependent cardiac muscle. The mammalian heart does not

possess a robust ability for cardiac muscle regeneration after

acute injury and the lost myocardium is replaced by fibrous

tissue to form a scar. The inability of the mammalian heart to

regenerate cardiac muscle coupled with a predominantly

fibrotic response to acute myocardial injury remains a funda-

mental biological problem to the therapy of heart disease.

Loss of cardiac muscle mass along with a non-functional scar

increases the haemodynamic burden on remaining cardiac

muscle. The cardiac chambers dilate and eventually, cardiac

contractile function declines leading to heart failure. Heart

failure remains the most common hospital discharge

diagnosis and more than a half a million people are diag-

nosed with this condition every year in the United States

alone (Hunt et al, 2005).

The Wnt signalling system, comprising 19 lipophilic

proteins in mammals (Gordon and Nusse, 2006), plays a

critical role in wound repair and regeneration from simple

systems such as planaria and hydra (Gurley et al, 2008;

Petersen and Reddien, 2008) to mammalian hair follicle

regeneration after skin wounding (Ito et al, 2007). Wnts are

developmentally important for cardiogenesis (Eisenberg and

Eisenberg, 2006) but there is conflicting evidence about the

role of Wnts in cardiac repair. Wnt antagonists such as

secreted frizzled-related protein (Sfrp2) exert anti-apoptotic

effects on cardiac myocytes and when injected into the

injured heart reduce fibrosis (Mirotsou et al, 2007; Zhang

et al, 2009; He et al, 2010). However, Kobayashi et al (2009)

demonstrated a pro-fibrotic role of Sfrp2 with mice deficient

in Sfrp2 exhibiting decreased fibrosis after myocardial injury.

Interestingly, in each of these studies, investigators noted that

Sfrp2 appeared to interact with the BMP pathway rather

than the Wnt signalling pathway in affecting fibrosis. Such

discrepant results, likely related to differences in genetic

models, interaction between Wnt and other signalling path-

ways and known biphasic effects of Wnts highlight the

complexity of Wnts in regulating repair. In this regard, little

is known about the pathophysiological role of specific Wnts

in cardiac repair. We investigate the role of Wnts in cardiac

repair and unexpectedly observe a dynamic role of Wnt1 in
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orchestrating early repair events involving the epicardium

and cardiac fibroblasts. Wnt1, a canonical Wnt and a marker

of neural crest cells (McMahon and Bradley, 1990), is upre-

gulated Beight-fold in the heart within 48 h of acute ischae-

mic cardiac injury and activates the epicardium and cardiac

fibroblasts. Wnt1 is initially expressed in the epicardium and

subsequently by cardiac fibroblasts in the region of cardiac

injury. The epicardium becomes Wnt responsive, undergoes

widespread activation and expands, undergoing epithelial–

mesenchymal transition (EMT) to generate fibroblasts that

localize in the subepicardial space. The injured regions of the

heart are Wnt responsive as well and Wnt1 induces cardiac

fibroblast proliferation and expression of pro-fibrotic genes.

Using loss of function approaches, we demonstrate that

interruption of downstream Wnt/bcatenin signalling in epi-

cardial cells impairs epicardial expansion, EMT and severely

compromises cardiac function following cardiac injury.

Furthermore, disruption of downstream Wnt signalling in

cardiac fibroblasts leads to a rapid decline in cardiac function,

impaired wound healing and dilatation of cardiac chambers

within a few days of cardiac injury. Taken together, our

findings suggest a pro-fibrotic Wnt/bcatenin-dependent in-

jury response activates the epicardium and cardiac fibro-

blasts, and is important for preserving cardiac function

after acute cardiac injury.

Results

Dynamic Wnt1 expression from epicardium to injury

region

We screened changes in expression of all 19 mammalian

Wnts by quantitative PCR (qPCR) at different time points

following acute ischaemic cardiac injury (Supplementary

Figure S1A). The left anterior descending artery which

supplies blood flow to the majority of the left ventricle of

the heart is temporally occluded to induce cardiac muscle

ischaemia and released 30 min later to further induce reper-

fusion injury to cardiac muscle cells. Sham-injured animals

served as controls at each time point. Expression of most

Wnts in the heart was low and did not change significantly

following injury (Supplementary Figure S1A), while some

Wnts were not expressed at all (Supplementary Figure S1D).

Wnt1, Wnt4 and Wnt7A expression significantly increased

following injury (Figure 1A; Supplementary Figure S1B and C).
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Figure 1 Wnt1 expression in the injured heart. (A) qPCR of Wnt1 expression in whole hearts following injury (n¼ 8 animals/group, *Po0.05
versus sham; mean±s.e.m.). (B) Sham-injured heart with ISH for Wnt1 and Masson-trichrome (MT) staining of same (C) Wnt1 ISH day 2 post
injury (arrows show epicardium and arrowhead region of injury) and MT staining of same (D) Wnt1 ISH day 4 post injury: (i) Wnt1 expression
in epicardial cells (arrow) (ii) early invasion of Wnt1 expression (arrow) (iii) contiguous Wnt1 expression into adjoining myocardium (arrows)
(iv) Wnt1 expression in region of injury (arrowhead). (E) Wnt1 ISH day 10 post injury; Wnt1 expression in area of injury (arrowhead) with MT
staining of same. (F) qPCR of Wnt1 expression in cardiac fibroblasts isolated following injury (n¼ 3 animals/group, *Po0.05 compared with
sham; mean±s.e.m.). Scale bar: 100mm.
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Wnt7A exhibited a transient increase and sharp decline

(Supplementary Figure S1C), while Wnt4 expression peaked

at 14 days following injury (Supplementary Figure S1B).

In contrast, Wnt1 expression increased by seven-fold within

2 days of acute cardiac injury and remained persistently

elevated even at 14 days albeit at lower levels (Figure 1A).

As cardiac fibroblast recruitment, proliferation and an acute

repair response occur within the first several days following

myocardial injury (Sun and Weber, 2000), we focused on the

possible role of Wnt1 in contributing to an active cardiac

repair response. To determine the anatomical region of

expression of Wnt1, we performed in-situ hybridization

(ISH) to Wnt1 mRNA following acute cardiac injury. Wnt1

was not expressed in sham-injured animals (Figure 1B).

However, 2 days following injury, we surprisingly observed

intense Wnt1 expression in the epicardial and subepicardial

space (Figure 1C). Masson-trichrome staining to determine

areas of injury and early fibrosis demonstrated spotty Wnt1

expression in the area of injury as well (Figure 1C). At 4 days

following injury, we again observed Wnt1 expression in the

epicardium that had now expanded (Figure 1Di). We saw

pockets of Wnt1 expression contiguous with the epicardium

extending into the adjoining myocardial interstitium (Figure

1Dii and iii). Wnt1 expression in the region of injury was

more intense compared with expression of Wnt1 in the injury

region at day 2 (Figure 1Div). By 10 days following injury, the

area of injury strongly expressed Wnt1 (Figure 1E). Sense and

scrambled controls for ISH did not show any staining and the

Wnt1 ISH probe was verified by staining regions of the mouse

embryo known to express Wnt1 (Supplementary Figure S1Ei–iv).

Given the localization of Wnt1 expression from the

epicardium to the region of injury by 10 days, we speculated

that Wnt1 expression progressively increases in cardiac

fibroblasts. We isolated cardiac fibroblasts by standard meth-

ods of differential attachment (Ieda et al, 2010) and consistent

with ISH observed significant upregulation of Wnt1 by qPCR

(Figure 1F). Western blotting on the injured region of the

heart demonstrated upregulation of Wnt1 as well (Supplemen-

tary Figure S1F) confirming the qPCR shown in Figure 1A. Taken

together, these observations demonstrating upregulation as well

as localization of Wnt1 expression from the epicardium to the

region of injury suggest a dynamic role of Wnt1 in activating the

epicardium and cardiac fibroblasts following acute ischaemic

cardiac injury.

Epicardial cells and cardiac fibroblasts express Wnt1

after cardiac injury

To confirm the phenotype of Wnt1-expressing cells, we

crossed Wnt1Cre transgenic mice with the lineage reporter

Rosa26RlacZ mice (Wnt1 cells express lacZ). We induced

acute cardiac injury in Wnt1Cre/R26RlacZ mice and analysed

lacZ expression in injured hearts.

Sham-injured animals exhibited lacZ expression in the

proximal aortic arch (Jiang et al, 2000) as well as in cardiac

nerves (Nakamura et al, 2006; Supplementary Figure S2A),

consistent with a neural crest origin of these structures. Xgal

staining of cryosections showed minimal lacZ expression

(Figure 2A) with only rare epicardial and interstitial cells

expressing lacZ (Figure 2B). Wnt1 was expressed within 2

days of cardiac injury with strong lacZ expression observed in

the epicardium (Figure 2C) and myocyte interstitium in the

region of injury (Figure 2D). To identify the phenotype of

Wnt1-expressing cells in Wnt1Cre/R26RlacZ mice after injury,

we performed double immunostaining with high-resolution

confocal microscopy with epicardial and cardiac fibroblast

markers. As shown in Figure 2E, cells in the epicardium (day

2 post injury Wnt1Cre/R26RlacZ hearts) that stained with bgal

antibody also expressed Wilms tumour 1 (Wt-1), a marker of

epicardial cells (Wilm et al, 2005; Zhou et al, 2008).

Moreover, cells in the injured region double stained for bgal

and fibroblast marker vimentin (Krenning et al, 2010;

Figure 2F) confirming that fibroblasts in the area of injury

express Wnt1. To further corroborate the fibroblast pheno-

type of Wnt1-expressing cells in the area of injury, we

digested the heart 2 days after injury and observed that

bgalactosidase-expressing cells co-stained with the fibroblast

marker, vimentin (Supplementary Figure S2B). As inflamma-

tory cells are known to express Wnts (Lobov et al, 2005), we

also stained for inflammatory markers (CD11b) but did not

observe inflammatory cells to be a significant source of Wnt1

(Supplementary Figure S2C). Taken together, these findings

support our in-situ data of Wnt1 being expressed in the

epicardium and region of injury.

We next determined the mechanism of Wnt1 upregulation

in epicardial cells following ischaemia-reperfusion cardiac

injury. Acute ischaemia-reperfusion injury of the heart is

associated with generation of free radicals and we investi-

gated whether reactive oxygen species (ROS) could switch on

Wnt1 transcription. We isolated epicardial cells from E12.5

days post fertilization (dpf) Wnt1Cre/R26RlacZ embryos and

treated epicardial cells with hydrogen peroxide (10�4M) for

10 min and stained them for lacZ expression 24 h later. We

chose to perform experiments on embryonic epicardial cells

as epicardial cells isolated from adult hearts exhibit signifi-

cant decline in trophic and migratory abilities (Smart et al,

2007b). Untreated control epicardial cells after 24 h did not

express lacZ (Figure 2G); however, upon brief treatment with

hydrogen peroxide, the epicardial colony stained with Xgal,

associated with change in morphology of these cells to a

spindle shaped phenotype (Figure 2H, inset). To further

corroborate this observation, we stained epicardial cells

with Wnt1 antibody and observed Wnt1 expression in epi-

cardial cells treated with hydrogen peroxide (Supplementary

Figure S2D). Taken together, this suggests that increased ROS

directly or indirectly upregulates Wnt1 at least in culture.

The epicardium and cardiac fibroblasts in the region of

injury are Wnt responsive

As the epicardium and cardiac fibroblasts express Wnt1

following cardiac injury, we investigated whether they are

also Wnt responsive following injury. We used TOPGAL

transgenic mice that express lacZ driven by TCF4 response

elements, TCF4 being a downstream mediator of canonical

Wnt signalling (DasGupta and Fuchs, 1999). We induced

acute cardiac injury in 8-week-old TOPGAL transgenic mice

and analysed hearts of mice for lacZ expression. Sham-

injured hearts did not express lacZ (Figure 3A). However

within 5 days of cardiac injury, intense lacZ expression was

visible on the surface of injured hearts in agreement with

recent reports of canonical Wnt activation post cardiac injury

(Figure 3B; Aisagbonhi et al, 2011). Xgal staining of cryosec-

tions demonstrated widespread epicardial activation with

epicardial lacZ expression present over the injured left ven-

tricle (Figure 3D) but not in sham-injured hearts (Figure 3C).

Wnt1/bcatenin injury response regulates cardiac repair
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The lacZ-expressing epicardium over the left ventricle had also

expanded (Figure 3E). Moreover, we observed that the epicar-

dium over the uninjured portion of the left ventricle and

ventricular septum were Wnt responsive as well (Figure 3F).

LacZ expression was also observed in the region of injury

(Figure 3G) consistent with our observations of cardiac fibro-

blasts in the injured region expressing Wnt1. To confirm this

observation that cardiac fibroblasts were also Wnt responsive,

we isolated cardiac fibroblasts from hearts of wild-type mice

at 2, 5, and 10 days following injury and observed 5–6-fold

upregulation of Axin2 expression in isolated cardiac fibroblasts

(Figure 3H), Axin2 being a marker of Wnt responsive cells

(Gordon and Nusse, 2006). It is interesting to note that Wnt

responsiveness of cardiac fibroblasts closely correlates with the

temporal pattern of Wnt1 expression in cardiac fibroblasts

following injury (Figure 1F), suggesting that cardiac fibroblasts

may be specifically responding to Wnt1. Taken together, these

observations demonstrate that the epicardium and fibroblasts

in the injury region express Wnt1 and respond to Wnts,

suggesting a role of Wnt-dependent regulation of these cardiac

cell components in repair.

Wnt1 activates cardiac fibroblasts and induces

epicardial cells to undergo EMT

The epicardium during cardiac development gives rise to

cardiac fibroblasts by undergoing EMT and Wnts are known

to regulate EMT in the developing heart (Gessert and Kuhl,

2010). During EMT in development, the epicardial cells adopt

a mesenchymal phenotype and migrate into the developing

ventricle. Furthermore, a recent report suggests that epicar-

dial cells undergo EMT after cardiac injury (Zhou et al, 2011).

We next investigated the effects of Wnt1 on epicardial cells.

We isolated epicardial cells from E12.5 dpf embryos of

Col1a2CreER(T)/R26RlacZ mice and treated freshly isolated

epicardial colonies with Wnt1 or PBS for 7 days. These mice

carry a tamoxifen-inducible Cre-recombinase element under

the fibroblast-specific regulatory sequence of proa2 type 1

collagen gene (Kapoor et al, 2008). Tamoxifen was concomi-

tantly added to all epicardial colonies. We observed that 35%

of epicardial cells following Wnt1 treatment expressed lacZ

suggestive that Wnt1 treatment induced epicardial cells to

undergo EMT and adopt a collagen-expressing fibroblastic

phenotype. In contrast, only 2% of cells treated with PBS

expressed lacZ after a week (Figure 4A and B). Wt-1 is

downregulated following EMT in the developing embryo

(Wilm et al, 2005) and we observed that Wnt1 treatment of

epicardial cells for 6 h led to 95% downregulation of Wt-1

(Figure 4C). Moreover, EMT leads to increased expression of

metalloproteinases (MMPs; Kalluri and Weinberg, 2009;

Thiery et al, 2009) and enhanced migratory ability and we

saw that epicardial cells upregulated MMP3 and MMP7

expression within 6 h of Wnt1 treatment (Figure 4C).
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antibodies against bgal (red) and fibroblast marker vimentin (green) showing cells that express both markers (arrowheads). Nuclei stained
with DAPI (blue). (G, H) Epicardial cells isolated from E12.5 dpf Wnt1Cre/R26RlacZ mice demonstrating Xgal staining of (G) untreated control
cells (H) cells treated with H2O2 (H, inset) epicardial colony in lower magnification (scale bar: A–D, G and H: 100mm; E and F: 50mm).
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By 24 h of Wnt1 treatment, expression of epithelial marker

E-cadherin was downregulated by 90% in epicardial cells

(Figure 4D), a critical event in EMT (Thiery et al, 2009).

Taken together, our observations are thus consistent

with Wnt1 inducing epicardial cells to undergo EMT. Wnt1

is known to mediate its effects through the canonical

bcatenin-dependent pathway. To determine whether Wnt1

was mediating EMT in epicardial cells in a bcatenin-depen-

dent manner, we infected epicardial cells isolated from

Col1a2CreER(T)/R26Rtdtomato (Madisen et al, 2010) embryo-

nic mice hearts with lentivirus shRNA targeting bcatenin.

Epicardial cells were treated with Wnt1 for 7 days and the
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animals/group) stained with Xgal in whole mount (A) sham-injured (B) day 5 post injury with staining on cardiac surface (arrows). Xgal
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degree of tomato fluorescence analysed, as a readout on the

degree of EMT. We observed that epicardial cells infected

with a bcatenin shRNA lentivirus had a 60% reduction in the

number of cells expressing tomato fluorescence compared

with cells infected with a lentivirus expressing a scrambled

shRNA construct (Supplementary Figure S3A and B). These

observations suggest that Wnt1 mediates its effects on epi-

cardial EMT predominantly via the canonical bcatenin path-

way. EMT confers cells with enhanced migratory properties

and Wnt1 also significantly increased migration of epicardial

cells by B25% consistent with epicardial cells adopting a

mesenchymal phenotype (Figure 4E and F). As cardiac

fibroblasts in the region of injury, expressed Wnt1 and were

Wnt responsive as well, we next investigated the effects of

Wnt1 on cardiac fibroblast function. We observed that Wnt1

overexpressing cardiac fibroblasts proliferate two-to-three

times greater than lacZ-expressing control cardiac fibroblasts

(Figure 4G; Supplementary Figure S3C). In this respect,

Wnt7A had a modest effect compared with that of Wnt1

(Figure 4G; Supplementary Figure S3C). Wnt1 overexpressing

cardiac fibroblasts also increased expression of genes known

to promote cardiac fibrosis (Figure 4H) compared with con-

trol cardiac fibroblasts expressing lacZ. These observations

demonstrate that Wnt1 signalling promotes epicardial

EMT, increases cardiac fibroblast activity, and enhances a

pro-fibrotic cardiac injury response.
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Interruption of Wnt/bcatenin signalling in epicardial

cells disrupts EMT and compromises cardiac function

after acute cardiac injury

Our data so far demonstrate that Wnt1 is upregulated in

the heart after cardiac injury and is expressed by both

epicardial cells and cardiac fibroblasts. Epicardial cells and

cardiac fibroblasts are also Wnt responsive and Wnt1 at least

in vitro induces bcatenin-dependent epicardial EMT and en-

hances cardiac fibroblast proliferation. To further determine

the functional significance of Wnt signalling in the epicardial

and fibroblast response to injury, we performed loss of

function experiments in each cell type.

We crossed Wt-1Cre mice with the lineage reporter

Rosa26RlacZ mice to create progeny Wt-1Cre/R26RlacZ mice.

Wt-1 is expressed in epicardial cells in the embryonic heart

and labels the adult epicardium (Zhou et al, 2008; Martinez-

Estrada et al, 2010). Uninjured hearts demonstrated Xgal

staining in majority of the epicardial cells around the heart

over the left ventricle as well as right ventricle (Figure 5A;

Supplementary Figure S4A). To confirm epicardial cell expan-

sion after cardiac injury, we induced acute cardiac injury in

8-week-old Wt-1Cre/R26RlacZ mice and analysed their hearts

for lacZ expression at 2, 5 and 7 days following acute cardiac

injury (Figure 5A; Supplementary Figure S4B). We observed

progressively increasing expansion of the epicardium

(Figure 5A) within the first week after cardiac injury with

peak epicardial expansion seen at 7 days (Figure 5A). These

findings support our observations made in Figure 1Di–iii that

the epicardium rapidly expands after acute cardiac injury.

Epicardial cells are activated during heart development

when the epicardial cells delaminate, undergo EMT and

migrate into the adjoining myocardium through fascial planes

(Männer et al, 2001). We next investigated whether the

epicardial cells after acute cardiac injury adopted a fibroblas-

tic phenotype. We performed double immunostaining along

with high-resolution confocal microscopy of the expanded

epicardium of Wt-1Cre/R26RlacZ mice hearts 5 days following

injury. Double staining of the epicardium with bgalactosidase

and fibroblast antibodies demonstrated that bgal-positive

cells in the expanded epicardium stained for fibroblast mar-

ker DDR2 (Figure 5B) and vimentin (Supplementary Figure

S4C), demonstrating that epicardial cells adopted a fibroblast

phenotype. These observations suggest that the epicardium

following injury not only gets activated and expands but also

adopts a mesenchymal phenotype.

To determine the functional significance of Wnt signalling

in regulating epicardial EMT after cardiac injury, we gener-

ated mice harbouring epicardial-specific deletion of bcatenin

(downstream mediator of canonical Wnt signalling) by cross-

ing Wt-1Cre mice with mice having both bcatenin alleles

floxed. Live pups survived into adulthood had normal body

weights compared with control littermates and phenotypi-

cally normal hearts with no significant difference in cardiac

function (Figure 5D) compared with control littermates with

intact bcatenin. We induced ischaemia-reperfusion injury and

harvested their hearts 14 days later to detect changes in

epicardial expansion and subepicardial collagen deposition.

Masson-trichrome staining of heart cryosections demon-

strated greatly expanded epicardium with abundant collagen

deposition in the epicardial/subepicardial space in mice with

intact epicardial bcatenin (Figure 5C). In mice harbouring

epicardial deletion of bcatenin, the epicardium expanded

minimally following injury and was similar to the epicardium

in sham-injured animals. Consistent with deficient epicardial

EMT, we observed minimal collagen deposition in the epi-

cardium/subepicardium (Figure 5C). Quantitative measure-

ments of maximal epicardial expansion demonstrated a near

10-fold decreased epicardial expansion in hearts of animals

lacking epicardial bcatenin (Figure 5C). To further determine

whether epicardial-derived cardiac fibroblasts are dependent

on bcatenin signalling in vivo, we subjected Wt-1Cre/

R26RlacZ/bcateninfl/fl mice to ischaemia-reperfusion, har-

vested and digested the heart and then analysed for expres-

sion of the fibroblast marker DDR2. As shown in

Supplementary Figure S4D, Cre-expressing cells (lacZ posi-

tive) did not express the fibroblast marker DDR2 with the

exception of rare cells. These observations suggest that

epicardial EMT to generate cardiac fibroblasts is predomi-

nantly bcatenin dependent. Furthermore, mice with epicar-

dial-specific bcatenin deletion exhibited cardiac dysfunction

with increased cardiac volumes and depressed fractional

shortening within 8 days of cardiac injury compared with

littermates with preserved epicardial bcatenin (Figure 5D and E;

Supplementary Table S1). Double immunostaining for bcate-

nin and troponin demonstrated that myocytes in the injured

heart of Wt-1Cre/bcateninfl/fl mice had preserved bcatenin

while the epicardial region of these animals demonstrated

minimal bcatenin expression compared with wild-type hearts

(Supplementary Figure S4E). Western blotting demonstrated a

near 90% reduction in bcatenin levels in Wt-1-positive cells

isolated from the adult heart (Supplementary Figure S4F). TTC

and Evans blue staining demonstrated that there were no

significant differences in initial infarct size between the bcate-

nin mutant and wild-type groups (Supplementary Figure S4G).

Deletion of bcatenin in GATA5 expressing embryonic epicar-

dium is known to impair the ability of epicardial progenitors to

form coronary vasculature (Zamora et al, 2007). Although the

reasons behind an inability of the epicardium of Wt-1Cre/

bcateninfl/fl mice to respond following cardiac injury are

unclear in our study, deletion of bcatenin in epicardial cells

during development could have led to a less trophic and

responsive epicardium. A significant fraction of intracellular

bcatenin resides in the cell membrane in association with

cell adhesion molecules and it is possible that deletion of

bcatenin in epicardial cells could have disrupted epicardial-

myocyte junctions. Previous studies have noted that deletion

of cell adhesion molecule N-cadherin in Wnt1-expressing

cells induces epicardial blebbing, cardiac muscle atrophy,

and thinning of ventricular walls during cardiac development

(Luo et al, 2006). We did not observe any changes in

N-cadherin expression in the epicardium following epicardial

deletion of bcatenin (data not shown) but deletion of

bcatenin could have led to disruption of other bcatenin–cell

adhesion complexes and contributed partially to cardiac dys-

function. Notwithstanding, our observations underscore the

importance of a bcatenin-driven response for epicardial ex-

pansion, EMT and preservation of cardiac function after acute

cardiac injury.

Interruption of Wnt/bcatenin signalling in cardiac

fibroblasts leads to cardiac dysfunction after acute

cardiac injury

Finally using a loss of function approach, we investigated

the effects of interrupting downstream Wnt signalling

Wnt1/bcatenin injury response regulates cardiac repair
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in fibroblasts after cardiac injury. We first crossed

Col1a2CreER(T) with the lineage reporter Rosa26RlacZ mice

to identify cardiac fibroblasts following injury. Collagen type

1 is an important component of cardiac scar, is expressed by

cardiac fibroblasts and serves as an useful marker of cardiac

fibroblasts (Kapoor et al, 2008). We injected mice with

tamoxifen for 10 days (stopped 5 days before injury), and

harvested their hearts for Xgal staining 11 days after injury.

Animals following cardiac injury demonstrated prominent

lacZ expression in the area of injury compared with sham-

injured animals (Supplementary Figure S5A). Double immu-

nostaining demonstrated that lacZ-expressing cells in

Col1a2CreER(T):R26RlacZ mice are of a fibroblast phenotype

(Supplementary Figure S5D) and there was no lacZ expres-

sion in cardiac myocytes (Supplementary Figure S5C), con-

sistent with previous reports of Col1a2CreER(T)/R26RlacZ

mice (Zheng et al, 2002; Florin et al, 2004).

We next confirmed that Wnt1 activates the canonical

pathway in cardiac fibroblasts and observed 3.5-fold upregu-

lation of bcatenin, in cardiac fibroblasts overexpressing

Wnt1 (Supplementary Figure S5E). To interrupt downstream

canonical Wnt signalling specifically in cardiac fibroblasts, we

generated tamoxifen-inducible Col1a2CreER(T)/bcateninfl/fl

mice by injecting mice with tamoxifen for 10 days prior to

injury. Western blotting demonstrated B75% reduction in

bcatenin in cardiac fibroblasts isolated from the adult heart

(Supplementary Figure S5F). Echocardiographic analysis

demonstrated decline in cardiac performance associated with

left ventricular dilatation within 8 days of injury, in contrast to

oil-injected animals that did not exhibit cardiac dilatation at

identical time points (Figure 6A–D; Supplementary Table S2).

Animals lacking Cre recombinase but injected with tamoxifen

had very similar cardiac function as oil-injected controls

(Figure 6A–D; Supplementary Table S2). There were no

differences in cardiac parameters in any of the groups prior

to the procedure (Figure 6A–C; Supplementary Table S2).

Infarct size to area at risk ratios estimated by TTC and Evans

Blue staining did not demonstrate any differences between

the bcatenin mutant and control groups (Supplementary

Figure S5B). Histological analysis of hearts of animals with

fibroblast-specific bcatenin deletion showed loose granula-

tion tissue and minimal collagen deposition in the injury

region at 8 days compared with vehicle-injected controls

(Figure 6Ei and ii). Given the effects of Wnt1/bcatenin

signalling in enhancing cardiac fibroblast proliferation, we

hypothesized that cardiac fibroblast proliferation in vivo was

dependent on Wnt/bcatenin signalling. We isolated cardiac

fibroblasts from hearts of Col1a2CreER(T)/bcatenin mice 8

days after cardiac injury (tamoxifen injected in similar fash-

ion), seeded them on 10 cm dishes and counted fibroblast

numbers in six random fields 48 h after seeding. We observed

nearly 80% reduction in fibroblast numbers isolated from

mice lacking fibroblast bcatenin compared with control

animals post injury (Supplementary Figure S6A and B).

Furthermore, immunohistochemistry showed decreased ex-

pression of the fibroblast marker DDR2 in subepicardial

regions of bcatenin mutant hearts compared with controls

(Supplementary Figure S6C) further supporting our observa-

tions of the pro-proliferative effects of bcatenin on cardiac

fibroblasts. Staining for Ki67 (marker of proliferation) de-

monstrated decreased Ki67 expression in the area of injury

and subepicardial regions in fibroblast-specific bcatenin

mutant hearts compared with controls (Supplementary

Figure S6D and E). These observations strongly suggest

that Wnt/bcatenin signalling plays an important role in

regulating cardiac fibroblast proliferation and response to

injury after cardiac injury. Cardiac fibroblast proliferation is

a critical early repair response for the injured heart and

impaired fibroblast response is known to undermine wound

healing. Our observations reveal an unexpected role of Wnt/

bcatenin signalling in mediating this critically required pro-

fibrotic injury response for cardiac homoeostasis after acute

ischaemic injury.

Discussion

Wnt1 is a cardiac ‘response to injury’ gene activating

the epicardium and cardiac fibroblasts

Several Wnts are expressed during cardiac development in a

spatio-temporal manner and participate in cardiogenesis but

expression of most Wnts in the adult heart is low (Eisenberg

and Eisenberg, 2006). In our screen for Wnts upregulated

following injury, Wnt1 and Wnt7a were the only Wnts that

are significantly elevated early after cardiac injury. Although

a potential contribution of Wnt7a to fibrosis cannot be

excluded, Wnt7A exhibited a transient spike in expression

while Wnt1 expression peaked early after injury and was

sustained albeit at lower levels days following injury. We

noted Wnt4 expression to increase after 7 days with a peak at

14 days after injury. Wnt4 is known to contribute to renal

fibrosis (Surendran et al, 2002) and it is possible that Wnt4

plays a role in later stages of cardiac fibrosis. However,

critical repair responses in the heart such as fibroblast pro-

liferation occur within the first few days after cardiac injury

and we observed Wnt1 to be dynamically expressed from the

epicardium to the area of injury early after cardiac injury.

Wnt1 is not known to directly contribute to cardiac develop-

ment but neural crest cells express Wnt1 and contribute to

the proximal portion of the aortic arch, formation of cardiac

nerves as well as to valve leaflets (Nakamura et al, 2006).

Our experiments demonstrate a novel function of Wnt1 as

a ‘cardiac response to injury’ gene in driving early repair

events in the heart. The epicardium is an epithelial layer

surrounding the myocardium and is derived from the pro-

epicardium during cardiac development. The epicardium

undergoes EMT during cardiac development and gives rise

to cardiac fibroblasts, contributes to formation of coronary

arteries and a small subset of cardiac myocytes as well (Cai

et al, 2008; Zhou et al, 2008). The mammalian epicardium

has been recently described to have mesenchymal and vas-

cular progenitors and thymosin b4 identified as a molecule

that activates and mobilizes epicardial progenitors and in-

duces EMT (Limana et al, 2007, 2010; Smart et al, 2007a;

Bock-Marquette et al, 2009). Moreover, a recent report sug-

gests that the epicardium can modulate cardiac repair by

paracrine mechanisms (Zhou et al, 2011). Our results reveal

that the mammalian heart possesses an endogenous ability to

activate its epicardium in a Wnt-dependent manner after

acute cardiac injury. The epicardium is dynamically activated

in a widespread manner, expands, undergoes EMT and gen-

erates subepicardial fibroblasts. Although the mechanisms of

widespread activation of the epicardium are unclear from our

studies, it may be related to intercellular gap junctions or

redox conditions generated secondary to ischaemia-reperfusion
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injury. The precise depth of migration as well as the role of

epicardial-derived fibroblasts compared with non-epicardial-

derived fibroblasts is not clear from our experiments; however,

the importance of epicardial activation is underscored by the

fact that disruption of epicardial Wnt signalling decreased

epicardial EMT, impaired subepicardial collagen deposition,

and led to ventricular dilatation and worsening cardiac

performance.

Fibroblasts in the region of injury respond to Wnts as well

and Wnt1 enhances the pro-fibrotic function of cardiac

fibroblasts, inducing fibroblast proliferation and expression

of pro-fibrotic genes. Disruption of downstream Wnt signal-

ling in cardiac fibroblasts leads to a precipitous decline

in cardiac function. Hearts lacking fibroblast bcatenin

(Col1a2CreER(T)/bcateninfl/fl) exhibited dramatically

reduced fibroblast numbers compared with control mouse
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hearts. Fibroblast numbers are known to peak in the

heart within the first 7 days of injury and the fibroblast

response to injury is a critical element of cardiac repair

(Camelliti et al, 2005). A disruption of Wnt/bcatenin signal-

ling abrogated this critically required fibroblast mediated

injury response and induced a rapid decline in cardiac

function. Consistent with this observation, interruption of

downstream Wnt signalling in epicardium and cardiac

fibroblasts led to severely decreased collagen deposition

and loosely organized granulation tissue in the injured region

as well as in the subepicardial region. We propose that gross

disorganization of wound healing along with little collagen

deposition leads to an adverse rapid cardiac remodelling that

results in acute ventricular dilatation and heart failure.

Cardiac fibroblasts are known to generate tensile forces

(Eastwood et al, 1998) and consistent with Laplace’s law,

an interruption of cardiac fibroblast activation will lead to

decreased tensile strength of the cardiac wall and predispose

the cardiac chambers to dilate from the pressure of the blood

within the chamber.

Our conclusions supporting a pro-fibrotic role of Wnt1 is

consistent with a similar role of Wnts in promoting skin

and pulmonary fibrosis in different pathologic conditions

(Cheon et al, 2002; Konigshoff et al, 2009). Our observations

about epicardial activation bear a striking similarity to the

response of the zebrafish heart (Lepilina et al, 2006) after

acute cardiac injury and suggest that the activation of the

epicardium after cardiac injury is an evolutionary conserved

response. However, the outcome is fibrotic in contrast to a

regenerative one in fish. Further studies may help delineate

Wnt-dependent strategies to manipulate epicardial activation

after cardiac injury to decrease fibrosis and enhance

regeneration.

Materials and methods

Myocardial injury
Mice are anaesthetized with isoflurane and a left thoracotomy is
performed under mechanical ventilation using a volume cycled
Harvard Rodent ventilator. Under direct visualization, the pericar-
dial sac is opened and the LAD artery is temporally occluded close
to its origin with 8-0 suture. Myocardial ischaemia is confirmed by
myocardial blanching as well as by STelevation on continuous ECG
monitoring. Following 30 min of ischaemia, the suture is released to
induce reperfusion injury and this is confirmed by decreased ST
segment elevation on ECG. For sham injury, an identical procedure
is followed and a ligature is passed under the LAD without
occluding it. Body temperatures of the animals are monitored with a
rectal probe and maintained by using a heated surgical platform.
The chest wall is closed in layers and the mice are transferred onto a
temperature-controlled pad for recovery. The surgeon was blinded
to the genotype of the mice or tamoxifen treatment.

In-situ hybridization
For ISH, a mouse Wnt1 cDNA fragment (460–1377 bp) was
subcloned into pKanascript vector, linearized with SalI and XbaI
to prepare probes by in-vitro transcription. Digoxigenin probes were
synthesized using DIG-UTP labeling kit (Roche). Probes were
validated by staining areas of mouse embryo known to express
Wnt1 and sense strand controls were used in parallel. Harvested
hearts were perfused with RNAse-free PBS, and frozen in OCT. ISH
was performed on 7–15 mM cryosections.

Generation of Col1a2CreER(T)/bcateninfl/fl and Wt-1Cre/
bcateninfl/fl mice
Col1a2CreER(T)/0 mice carry a tamoxifen-inducible Cre-recombi-
nase (CreER(T)) element under the control of a fibroblast-specific

regulatory sequence from the proa2(I) collagen gene (Kapoor et al,
2008). Col1a2CreER(T)/0 mice were crossed with bcateninfl/fl mice
(Jackson Labs) to generate mice heterozygous for both alleles. The
second cross between bcateninfl/fl mice and heterozygous mice
from the first cross produced Col1a2CreER(T)/bcateninfl/fl mice,
which were used in experiments. Mice lacking bcatenin in Wt-1
cells were generated by a similar strategy following mating of Wt-
1Cre and bcateninfl/fl mice. To delete bcatenin in tamoxifen-
inducible Col1a2Cre/bcateninfl/fl mice, a stock solution of tamox-
ifen (Sigma-Aldrich) in ethanol (100 mg/ml) was diluted in corn oil
to 10 mg/ml. Adult mice (age, 6–7 weeks) were given intraper-
itoneal injections of the tamoxifen suspension (0.1 ml of 10 mg/ml)
for 10 days and injections were stopped 5 days before surgery. Mice
lacking the Cre transgene were injected in an identical fashion. All
surgical procedures were approved by Institutional Animal Care and
Use Committee at the University of North Carolina at Chapel
Hill, NC.

Quantitative RT–PCR
Total RNA from mouse heart, or cultured cells was isolated with
SV Total RNA Isolation system by following the manufacturer0s
protocols (Promega). qPCR (including no ‘RT control’) were
performed at least in triplicate. The reactions were run at 951C for
10 min, followed by 40 cycles of 951C for 15 s and 601C for 60 s. Fold
changes in gene expression were calculated using the DDCt method
after normalizing to GAPDH. Wnt primer sequences were used as
previously described (Kemp et al, 2005).

Xgal staining
For whole mount Xgal staining, tissues were harvested and fixed
with (0.2%. glutaraldehyde, 5 mM EGTA, pH 7.3, PBS) at 41C for 2 h
(heart) or 1 h (embryo E11.5–E13.5). Following fixation, samples
were washed three times for 30 min in Xgal wash buffer (2 mM
MgCl2, 0.1% Triton-100 in PBS) and then stained overnight with
Xgal staining solution (1 mg/ml Xgal, 5 mM potassium ferrocyanide,
and 5 mM potassium ferricyanide in washing buffer) at 371C.

For Xgal staining of cryosections, whole hearts were harvested
and fixed 0.2% glutaraldehyde solution (as mentioned above) at
41C for 4 h. The fixed hearts were embedded in Tissue-Tek OCT
compound and frozen. Cryosections (15 and 7mm) were prepared
and stained for bgalactosidase activity. Prior to staining, sections
were refixed in cold PBS containing 0.2% glutaraldehyde for 10 min.
Sections were washed three times for 5 min in lacZ wash buffer
(2 mM MgCl2, 0.01% sodium deoxycholate, 0.02% Nonidet-P40
(NP-40) in PBS) and then stained in Xgal staining solution at 371C
overnight. Sections were rinsed in PBS, counterstained, moved
through a graded ethanol series for dehydration and then mounted.

Echocardiography
Cardiac trans-thoracic echocardiography was performed (blinded to
mouse genotype and treatment) on conscious mice using a
VisualSonics Vevo 770 ultrasound biomicroscopy system (Visual-
Sonics, Inc., Toronto, Ontario, Canada) using the 707B scan head
(30 MHz) as previously described (Li et al, 2007; Willis et al, 2007).
Briefly, two-dimensional guided M-mode was performed in the
parasternal long axis and short axis at the level of the papillary
muscle. Epicardial to endocardial leading edges were used to
measure anterior wall (IVSd, IVSs) and posterior (PWTd, PWTs)
wall thicknesses, as well as the left ventricular internal diameters
(LVEDD, LVESD). Left ventricular systolic function was assessed
by ejection fraction (LV EF%¼ ((LV Vol (d)�LV Vol (s)/LV
Vol (d)� 100)) and fractional shortening (%FS¼ ((LVEDD�L-
VESD)/LVEDD)� 100). M-mode measurements represent three
average consecutive cardiac cycles from each mouse.

Construction of plasmids and lentiviruses
Mouse Wnt1 full-length cDNA clone (Open Biosystems) was cloned
into pLenti6/V5-DEST Gateways Vector system following the
manufacturer’s protocol (Invitrogen). pLenti6.2/V5-GW/lacZ was
used as a control vector. The plasmid was verified by sequencing
and restriction enzyme digestion. Lentiviruses were produced from
Vector Core Facility at the University of North Carolina at Chapel
Hill.

Lentiviral shRNA
Epicardial cells were harvested from mouse embryonic hearts
(Col1a2CreER(T)/R26Rtdtomato) and infected with lentiviral shRNA
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(Santa Cruz Biotechnology, Santa Cruz, CA) targeting bcatenin or a
control lentivirus (similar MOI) encoding a scrambled sequence
according to the manufacturer’s instructions. GFP co-expression on
the lentiviral construct was used to determine efficiency of viral
transduction. Epicardial EMT was determined by the number of
tomato fluorescent cells in each high power field.

Epicardium cell isolation and wound migration assay
Timed matings were performed to harvest E12.5 dpf embryos for
isolation of epicardial cells as described (Dong et al, 2008). Briefly,
the ventricle following dissection was placed ‘apex down’ on 12- or
24-well plates pre-coated with gelatin or collagen type I gel. After
24 h, the ventricle was removed and the epicardial cells used for the
experiment within 24 h. For in-vitro wounding (migration) experi-
ments, epicardial cells were harvested on gelatin-coated 24-well
plates. The monolayer was injured by scratching across the
epicardial colony with a 20-ml pipette tip. The wells were washed
two times to remove detached cells or cell debris. The cells were
then cultured in 3% FBS medium with/without Wnt1 protein
(25 nM) (Abcam, MA, USA). After 24 h, images of the scratched
areas under each condition were photographed. Scratch wound
distance was measured using WCIF image J software.

Measurement of epicardial thickness
Photographs were taken of cryosections of hearts stained with
Masson trichrome. Epicardial thickness was measured with J image
software at five regions around the ventricular surface by dropping
a perpendicular line from the epicardial surface to edge of the viable
myocardium. The thickening of the epicardium and subepicardial
regions were not uniform in all sections. To circumvent this issue,
and obtain a true representation of differences in epicardial
activation following injury, we measured epicardial thickness in
sections where we observed injury. Second for each heart section
examined, we measured maximal epicardial thickness in 3–5
regions around the heart section. Finally, epicardial thickness in
three different heart regions (i.e. base, mid ventricle and apex) was
averaged to obtain a mean epicardial thickness (Supplementary
Figure S7).

Cardiac fibroblast isolation and proliferation assays
Briefly, 8-week-old adult mouse hearts were excised, minced, and
placed in a solution containing 50 U/ml Collagenase II and 0.1%
trypsin. The hearts were subjected to periods of digestion at 371C
for 10 min with gentle shaking; cells from the second to sixth
digestion were pooled, filtered by 40 mm nylon cell strainer,
centrifuged, and suspended in DMEM supplemented with 10%
fetal bovine serum and penicillin/streptomycin (100 U/ml). The cell
suspension was seeded into uncoated plastic culture dishes
(100 mm) for 90 min to allow for the preferential attachment of
fibroblasts, after which unattached cells were rinsed off. The
fibroblasts became 60–80% confluent within 4 days and were
subsequently passaged with trypsin. All cells used in the experi-
ments were from passages 2 or 3. The purity of these cultures was
determined by immunofluorescent staining with vimentin and
DDR2 antibodies. The proliferation of isolated cardiac fibroblasts
was assayed by CyQUANT cell proliferation assay kit (Invitrogen)
and FITC BrdU Flow Kit (BD Biosciences) as described by the
manufacturer’s protocols. For proliferation assays, cardiac fibro-
blasts were seeded at a density of 4�103 cells/well in 48-well plates
a day prior to Wnt1 treatment.

Cytoplasmic b-catenin western blotting
Cardiac fibroblasts were infected with a Wnt1 lentivirus and
cytoplasm extracted 48 h later using a FractionPREP Cell Fractiona-
tion Kit (Biovision, USA). Protein lysates were separated by
SDS–PAGE followed by electrotransfer onto nitrocellulose mem-
brane (Millipore). Membranes were incubated for 1 h at room
temperature with primary antibodies: anti-bcatenin (Cell Signaling
Technology; 1:1000), anti-GAPDH (Millipore; 1:1000), and then with
peroxidase-conjugated secondary antibodies. Immunoreactive
bands were visualized using Amersham ECL western blotting
detection reagents (GE Healthcare). Membranes were analysed with
the UVP gel Imaging System.

Histology and immunohistochemistry
Whole hearts were harvested and fixed with 2% paraformaldehyde
at 41C for 24 h. Fixed tissues were dehydrated, embedded in paraffin
and 5mM thickness sections prepared. Haematoxylin-Eosin (H/E)
staining and Masson’s trichrome staining were performed using
standard methods. For immunohistochemistry, sections were
subjected to antigen retrieval by treating them with boiling citrate
buffer (pH 6.0) for 15 min followed by staining according to the
manufacturer’s instructions (Vector Labs ABC kit). Ki67 and CD11b
antibodies (Abcam) were used at 1:100 dilution.

TTC and Evans blue staining and estimation of infarct area/
area at risk
TTC combined with Evans blue staining was done to determine
infarct area and area at risk. In brief, a subgroup of mice 48 h
following ischaemia-reperfusion injury were subjected to thoracot-
omy and religation of the left anterior descending artery. A suture
was left in place during initial ischaemia to mark the site of arterial
ligation. Following ligation of the left anterior descending artery, the
aorta of the mice was injected with 1% Evans blue. The infusion
was discontinued as soon as epicardial blush was observed. Excess
Evans Blue was washed off and the heart snap frozen and cut into
sections, stained with TTC for 20 min followed by fixation with PFA.
After 20 min, the sections were washed lightly and photographs of
both sides of each heart section were taken with a microscope.
Analysis was done with Image J software as described (Inagaki
et al, 2003).

Immunofluorescence
Cells were fixed in 2% paraformaldehyde for 15 min and
permeabilized with PBS buffer containing 0.1% Triton-100.
Cryosections were fixed in acetone for 10 min at �201C and treated
with fresh 1 mg/ml sodium borohydride in PBS for 10 min, three
times before applying primary antibody. Sections were incubated
with anti-vimentin (Millipore, 1:100), anti-DDR2 (Santa Cruz
Biotechnology, 1:50), anti-b-galactosidase (MP Biomedicals,
1:200), anti-Wt-1 (DAKO, 1:100), anti-Wnt1 (Abcam, 1:100), and
anti-CD11b (Abcam, 1:100) primary antibodies followed by addition
of biotinylated secondary antibodies and Avidin D FITC or
Texas Red (Vector Biolabs). For heart tissue staining, sections were
further treated with 1% Sudan B for 5 min to quench auto-
fluorescence. Sections were washed, mounted with ProLong Gold
anti-fade reagent (Molecular Probes Inc.) on glass slides, and
photographed using a Leica SP2 AOBS upright laser scanning
confocal microscopy.

Statistical analysis
Student’s t-test, one-way and two-way ANOVA with Bonferroni’s
post-test analysis were used as appropriate. All statistical calcula-
tions were computed using GraphPad Prism software.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).

Acknowledgements

We thank the In-situ Hybridization, Histology Research, Michael
Hooker Microscopy and Animal Histology core facilities at UNC,
Chapel Hill for assistance with techniques. We thank Jackie
Kylander and Taylor Kopple in the Mouse Cardiovascular core lab
at UNC, Chapel Hill for assistance with echocardiography and
Dr Gobinda Sarkar (Mayo Clinic, Rochester, MN) for critical reading
of the manuscript. This work was supported by grants from the
National Institutes of Health and Ellison Medical Foundation to
Arjun Deb.

Author contributions: JD, CG, DL, EH, LS, LR, JR, MR, MW and
AD performed experiments. AL and MW provided vital reagents
and aided in experimental design. JD, MW and AD analysed data.
JD and AD wrote the manuscript. AD conceptualized the project.

Conflict of interest

The authors declare that they have no conflict of interest.

Wnt1/bcatenin injury response regulates cardiac repair
J Duan et al

The EMBO Journal VOL 31 | NO 2 | 2012 &2012 European Molecular Biology Organization440

http://www.embojournal.org


References

Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos
AK (2011) Experimental myocardial infarction triggers canonical
Wnt signaling and endothelial-to-mesenchymal transition. Dis
Model Mech 4: 469–483

Bock-Marquette I, Shrivastava S, Pipes GC, Thatcher JE, Blystone A,
Shelton JM, Galindo CL, Melegh B, Srivastava D, Olson EN,
DiMaio JM (2009) Thymosin beta4 mediated PKC activation is
essential to initiate the embryonic coronary developmental pro-
gram and epicardial progenitor cell activation in adult mice
in vivo. J Mol Cell Cardiol 46: 728–738

Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L,
Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J,
Evans SM (2008) A myocardial lineage derives from Tbx18
epicardial cells. Nature 454: 104–108

Camelliti P, Borg TK, Kohl P (2005) Structural and functional
characterisation of cardiac fibroblasts. Cardiovasc Res 65: 40–51

Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, Alman
BA (2002) beta-Catenin stabilization dysregulates mesenchymal
cell proliferation, motility, and invasiveness and causes aggres-
sive fibromatosis and hyperplastic cutaneous wounds. Proc Natl
Acad Sci USA 99: 6973–6978

DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF
transcription complexes during hair follicle development and
differentiation. Development 126: 4557–4568

Dong XR, Maguire CT, Wu SP, Majesky MW (2008) Chapter 9.
Development of coronary vessels. Methods Enzymol 445:
209–228

Eastwood M, McGrouther DA, Brown RA (1998) Fibroblast
responses to mechanical forces. Proc Inst Mech Eng H 212: 85–92

Eisenberg LM, Eisenberg CA (2006) Wnt signal transduction and the
formation of the myocardium. Dev Biol 293: 305–315

Florin L, Alter H, Grone HJ, Szabowski A, Schutz G, Angel P (2004)
Cre recombinase-mediated gene targeting of mesenchymal cells.
Genesis 38: 139–144

Gessert S, Kuhl M (2010) The multiple phases and faces of wnt
signaling during cardiac differentiation and development. Circ Res
107: 186–199

Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways,
multiple receptors, and multiple transcription factors. J Biol Chem
281: 22429–22433

Gurley KA, Rink JC, Alvarado AS (2008) {beta}-Catenin defines
head versus tail identity during planarian regeneration and
homeostasis. Science 319: 323–327

He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, Pratt RE, Dzau
VJ (2010) Exogenously administered secreted frizzled related
protein 2 (Sfrp2) reduces fibrosis and improves cardiac function
in a rat model of myocardial infarction. Proc Natl Acad Sci USA
107: 21110–21115

Hunt S, Abraham W, Chin M, Feldman A, Francis G, Ganiats T,
Jessup M, Konstam M, Mancini D, Michl K (2005) ACC/AHA 2005
Guideline Update for the Diagnosis and Management of Chronic
Heart Failure in the Adult—Summary Article A Report of the
American College of Cardiology/American Heart Association
Task Force on Practice Guidelines (Writing Committee to
Update the 2001 Guidelines for the Evaluation and Management
of Heart Failure). J Am Coll Cardiol 46: 1116–1143

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau
BG, Srivastava D (2010) Direct reprogramming of fibroblasts into
functional cardiomyocytes by defined factors. Cell 142: 375–386

Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, Rezaee
M, Yock PG, Murphy E, Mochly-Rosen D (2003) Inhibition of
delta-protein kinase C protects against reperfusion injury of the
ischemic heart in vivo. Circulation 108: 2304–2307

Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007)
Wnt-dependent de novo hair follicle regeneration in adult mouse
skin after wounding. Nature 447: 316–320

Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000)
Fate of the mammalian cardiac neural crest. Development 127:
1607–1616

Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchy-
mal transition. J Clin Invest 119: 1420–1428

Kapoor M, Liu S, Shi-wen X, Huh K, McCann M, Denton CP,
Woodgett JR, Abraham DJ, Leask A (2008) GSK-3beta in mouse
fibroblasts controls wound healing and fibrosis through an
endothelin-1-dependent mechanism. J Clin Invest 118: 3279–3290

Kemp C, Willems E, Abdo S, Lambiv L, Leyns L (2005) Expression
of all Wnt genes and their secreted antagonists during mouse
blastocyst and postimplantation development. Dev Dyn 233:
1064–1075

Kobayashi K, Luo M, Zhang Y, Wilkes D, Ge G, Grieskamp T,
Yamada C, Liu T, Huang G, Basson C, Kispert A, Greenspan D,
Sato T (2009) Secreted Frizzled-related protein 2 is a procollagen
C proteinase enhancer with a role in fibrosis associated with
myocardial infarction. Nat Cell Biol 11: 46–55

Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A,
Rose F, Fink L, Seeger W, Schaefer L, Gunther A, Eickelberg O
(2009) WNT1-inducible signaling protein-1 mediates pulmonary
fibrosis in mice and is upregulated in humans with idiopathic
pulmonary fibrosis. J Clin Invest 119: 772–787

Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts
and mechanism of cardiac fibrosis. J Cell Physiol 225: 631–637

Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns
CG, Poss KD (2006) A dynamic epicardial injury response sup-
ports progenitor cell activity during zebrafish heart regeneration.
Cell 127: 607–619

Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ,
Patterson C (2007) Atrogin-1 inhibits Akt-dependent cardiac
hypertrophy in mice via ubiquitin-dependent coactivation of
Forkhead proteins. J Clin Invest 117: 3211–3223

Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini
D, Iannelli P, De Mori R, Marchetti C, Pozzoli O, Gentili C, Zacheo
A, Germani A, Capogrossi MC (2010) Myocardial infarction
induces embryonic reprogramming of epicardial c-kit(+) cells:
role of the pericardial fluid. J Mol Cell Cardiol 48: 609–618

Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G,
Diamantini A, De Mori R, Battistini L, Vigna E, Santini M,
Loiaconi V, Pompilio G, Germani A, Capogrossi MC (2007)
Identification of myocardial and vascular precursor cells in
human and mouse epicardium. Circ Res 101: 1255–1265

Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S,
Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty
G, Lang RA (2005) WNT7b mediates macrophage-induced pro-
grammed cell death in patterning of the vasculature. Nature 437:
417–421

Luo Y, High FA, Epstein JA, Radice GL (2006) N-cadherin is required
for neural crest remodeling of the cardiac outflow tract. Dev Biol
299: 517–528

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H,
Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H
(2010) A robust and high-throughput Cre reporting and charac-
terization system for the whole mouse brain. Nat Neurosci 13:
133–140
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