29,826 research outputs found

    An Ultraviolet Fe II Image of SN 1885 in M31

    Get PDF
    Ultraviolet imaging of the remnant of Supernova 1885 in M31 with the Hubble Space Telescope using the F255W filter on the WFPC2 reveals a dark spot of Fe II absorption at the remnant's known position in the bulge of M31. The diameter of the absorbing spot is 0"55 +- 0"15, slightly smaller than, but consistent with, the 0"70 +- 0"05 diameter measured in the higher quality WFPC2 Ca II absorption image previously reported by us. The measured ratio of flux inside to outside SNR 1885 in the Fe II image is 0.24 +- 0.17, consistent with the ratio 0.33 +- 0.04 expected on the basis of a model fit to the previously obtained near-UV FOS spectrum. The observed depth of Fe II absorption suggests that Fe II is fully saturated, with an iron mass in the range M_Fe = 0.1-1.0 Msun. Besides Fe, ion species Mg I, Mg II, and Mn I probably make some contribution to the absorption from the SN 1885 remnant in the F255W image.Comment: 7 pages, including 2 embedded PostScript figures, emulateapj.sty, submitted to Ap

    Wide Angle Redshift Distortions Revisited

    Full text link
    We explore linear redshift distortions in wide angle surveys from the point of view of symmetries. We show that the redshift space two-point correlation function can be expanded into tripolar spherical harmonics of zero total angular momentum Sl1l2l3(x^1,x^2,x^)S_{l_1 l_2 l_3}(\hat x_1, \hat x_2, \hat x). The coefficients of the expansion Bl1l2l3B_{l_1 l_2 l_3} are analogous to the ClC_l's of the angular power spectrum, and express the anisotropy of the redshift space correlation function. Moreover, only a handful of Bl1l2l3B_{l_1 l_2 l_3} are non-zero: the resulting formulae reveal a hidden simplicity comparable to distant observer limit. The Bl1l2l3B_{l_1 l_2 l_3} depend on spherical Bessel moments of the power spectrum and f=Ω0.6/bf = \Omega^{0.6}/b. In the plane parallel limit, the results of \cite{Kaiser1987} and \cite{Hamilton1993} are recovered. The general formalism is used to derive useful new expressions. We present a particularly simple trigonometric polynomial expansion, which is arguably the most compact expression of wide angle redshift distortions. These formulae are suitable to inversion due to the orthogonality of the basis functions. An alternative Legendre polynomial expansion was obtained as well. This can be shown to be equivalent to the results of \cite{SzalayEtal1998}. The simplicity of the underlying theory will admit similar calculations for higher order statistics as well.Comment: 6 pages, 1 figure, ApJL submitte

    Glasgow's housing policies

    Get PDF

    Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot

    Full text link
    In this work, we study hole transport in a planar silicon metal-oxide-semiconductor based double quantum dot. We demonstrate Pauli spin blockade in the few hole regime and map the spin relaxation induced leakage current as a function of inter-dot level spacing and magnetic field. With varied inter-dot tunnel coupling we can identify different dominant spin relaxation mechanisms. Applying a strong out-of-plane magnetic field causes an avoided singlet-triplet level crossing, from which the heavy hole g-factor \sim 0.93, and the strength of spin-orbit interaction \sim 110 μ\mueV, can be obtained. The demonstrated strong spin-orbit interaction of heavy hole promises fast local spin manipulation using only electrical fields, which is of great interest for quantum information processing.Comment: 15 pages, 4 figure

    Continued Progress: Promising Evidence on Personalized Learning

    Get PDF
    The findings are grouped into four sections. The first section on student achievement finds that there were positive effects on student mathematics and reading performance and that the lowest-performing students made substantial gains relative to their peers. The second section on implementation and the perceptions of stakeholders finds that adoption of personalized learning practices varied considerably. Personalized learning practices that are direct extensions of current practice were more common, but implementation of some of the more challenging personalized learning strategies was less common. The third section relates implementation features to outcomes and identifies three elements of personalized learning that were being implemented in tandem in the schools with the largest achievement effects. Finally, the fourth section compares teachers' and students' survey responses to a national sample and finds some differences, such as teachers' greater use of practices that support competency-based learning and greater use of technology for personalization in the schools in this study with implementation data

    Bandwidth in bolometric interferometry

    Get PDF
    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator accounting for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation has been performed and confirms the analytical results. We conclude (i) that broadband bolometric interferometers allow broadband visibilities to be reconstructed whatever the kind of phase shifters used and (ii) that for dedicated B-mode bolometric interferometers, the sensitivity loss due to bandwidth smearing is quite acceptable, even for wideband instruments (a factor 2 loss for a typical 20% bandwidth experiment).Comment: 13 pages, 14 figures, submitted to A&

    Power Spectrum Correlations Induced by Non-Linear Clustering

    Get PDF
    Gravitational clustering is an intrinsically non-linear process that generates significant non-Gaussian signatures in the density field. We consider how these affect power spectrum determinations from galaxy and weak-lensing surveys. Non-Gaussian effects not only increase the individual error bars compared to the Gaussian case but, most importantly, lead to non-trivial cross-correlations between different band-powers. We calculate the power-spectrum covariance matrix in non-linear perturbation theory (weakly non-linear regime), in the hierarchical model (strongly non-linear regime), and from numerical simulations in real and redshift space. We discuss the impact of these results on parameter estimation from power spectrum measurements and their dependence on the size of the survey and the choice of band-powers. We show that the non-Gaussian terms in the covariance matrix become dominant for scales smaller than the non-linear scale, depending somewhat on power normalization. Furthermore, we find that cross-correlations mostly deteriorate the determination of the amplitude of a rescaled power spectrum, whereas its shape is less affected. In weak lensing surveys the projection tends to reduce the importance of non-Gaussian effects. Even so, for background galaxies at redshift z=1, the non-Gaussian contribution rises significantly around l=1000, and could become comparable to the Gaussian terms depending upon the power spectrum normalization and cosmology. The projection has another interesting effect: the ratio between non-Gaussian and Gaussian contributions saturates and can even decrease at small enough angular scales if the power spectrum of the 3D field falls faster than 1/k^2.Comment: 34 pages, 15 figures. Revised version, includes a clearer explanation of why the hierarchical ansatz does not provide a good model of the covariance matrix in the non-linear regime, and new constraints on the amplitudes Ra and Rb for general 4-pt function configurations in the non-linear regim
    corecore