952 research outputs found

    Zero-Energy Modes from Coalescing Andreev States in a Two-Dimensional Semiconductor-Superconductor Hybrid Platform

    Full text link
    We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to 33~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.Comment: Includes Supplementary Materia

    Current Demographics Suggest Future Energy Supplies Will Be Inadequate to Slow Human Population Growth

    Get PDF
    Influential demographic projections suggest that the global human population will stabilize at about 9–10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections

    Machine learning with remote sensing data to locate uncontacted indigenous villages in Amazonia

    Get PDF
    Background The world’s last uncontacted indigenous societies in Amazonia have only intermittent and often hostile interactions with the outside world. Knowledge of their locations is essential for urgent protection efforts, but their extreme isolation, small populations, and semi-nomadic lifestyles make this a challenging task. Methods Remote sensing technology with Landsat satellite sensors is a non-invasive methodology to track isolated indigenous populations through time. However, the small-scale nature of the deforestation signature left by uncontacted populations clearing villages and gardens has similarities to those made by contacted indigenous villages. Both contacted and uncontacted indigenous populations often live in proximity to one another making it difficult to distinguish the two in satellite imagery. Here we use machine learning techniques applied to remote sensing data with a training dataset of 500 contacted and 25 uncontacted villages. Results Uncontacted villages generally have smaller cleared areas, reside at higher elevations, and are farther from populated places and satellite-detected lights at night. A random forest algorithm with an optimally-tuned detection cutoff has a leave-one-out cross-validated sensitivity and specificity of over 98%. A grid search around known uncontacted villages led us to identify three previously-unknown villages using predictions from the random forest model. Our efforts can improve policies toward isolated populations by providing better near real-time knowledge of their locations and movements in relation to encroaching loggers, settlers, and other external threats to their survival

    The mortality of companies

    Get PDF
    The firm is a fundamental economic unit of contemporary human societies. Studies on the general quantitative and statistical character of firms have produced mixed results regarding their lifespans and mortality. We examine a comprehensive database of more than 25 000 publicly traded North American companies, from 1950 to 2009, to derive the statistics of firm lifespans. Based on detailed survival analysis, we show that the mortality of publicly traded companies manifests an approximately constant hazard rate over long periods of observation. This regularity indicates that mortality rates are independent of a company's age. We show that the typical half-life of a publicly traded company is about a decade, regardless of business sector. Our results shed new light on the dynamics of births and deaths of publicly traded companies and identify some of the necessary ingredients of a general theory of firms

    Data-driven counterfactual evaluation of management outcomes to improve emergency conservation decisions

    Get PDF
    Monitoring is needed to assess conservation success and improve management, but naïve or simplistic interpretation of monitoring data can lead to poor decisions. We illustrate how to counter this risk by combining decision-support tools and quantitative counterfactual analysis. We analyzed 20 years of egg rescue for tara iti (Sternula nereis davisae) in Aotearoa New Zealand. Survival is lower for rescued eggs; however, only eggs perceived as imminently threatened by predators or weather are rescued, so concluding that rescue is ineffective would be biased. Equally, simply assuming all rescued eggswould have died if left in situ is likely to be simplistic. Instead, we used the monitoring data itself to estimate statistical support for a wide space of uncertain counterfactuals about decisions and fate of rescued eggs. Results suggest under past management, rescuing and leaving eggs would have led to approximately the same overall fledging rate, because of likely imperfect threat assessment and low survival of rescued eggs to fledging. Managers are currently working to improve both parameters. Our approach avoids both naïve interpretation of observed outcomes and simplistic assumptions thatmanagement is always justified, using the same data to obtain unbiased quantitative estimates of counterfactual support

    Detecting level crossings without looking at the spectrum

    Full text link
    In many physical systems it is important to be aware of the crossings and avoided crossings which occur when eigenvalues of a physical observable are varied using an external parameter. We have discovered a powerful algebraic method of finding such crossings via a mapping to the problem of locating the roots of a polynomial in that parameter. We demonstrate our method on atoms and molecules in a magnetic field, where it has implications in the search for Feshbach resonances. In the atomic case our method allows us to point out a new class of invariants of the Breit-Rabi Hamiltonian of magnetic resonance. In the case of molecules, it enables us to find curve crossings with practically no knowledge of the corresponding Born-Oppenheimer potentials.Comment: 4 pages, new title, no figures, accepted by Phys. Rev. Let

    Environmental flow requirements of estuaries: providing resilience to current and future climate and direct anthropogenic changes

    Get PDF
    Estuaries host unique biodiversity and deliver a range of ecosystem services at the interface between catchment and the ocean. They are also among the most degraded ecosystems on Earth. Freshwater flow regimes drive ecological processes contributing to their biodiversity and economic value, but have been modified extensively in many systems by upstream water use. Knowledge of freshwater flow requirements for estuaries (environmental flows or E-flows) lags behind that of rivers and their floodplains. Generalising estuarine E-flows is further complicated by responses that appear to be specific to each system. Here we critically review the E-flow requirements of estuaries to 1) identify the key ecosystem processes (hydrodynamics, salinity regulation, sediment dynamics, nutrient cycling and trophic transfer, and connectivity) modulated by freshwater flow regimes, 2) identify key drivers (rainfall, runoff, temperature, sea level rise and direct anthropogenic) that generate changes to the magnitude, quality and timing of flows, and 3) propose mitigation strategies (e.g., modification of dam operations and habitat restoration) to buffer against the risks of altered freshwater flows and build resilience to direct and indirect anthropogenic disturbances. These strategies support re-establishment of the natural characteristics of freshwater flow regimes which are foundational to healthy estuarine ecosystems

    Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox Pathway to Defend Against Oxidative Stress Under Infections

    Get PDF
    Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections. The low molecular weight thiol bacillithiol (BSH) is an important defense mechanism of S. aureus for detoxification of ROS and HOCl stress to maintain the reduced state of the cytoplasm. Under HOCl stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolations, which are reduced by bacilliredoxins (BrxA and BrxB). The NADPH-dependent flavin disulfide reductase YpdA is phylogenetically associated with the BSH synthesis and BrxA/B enzymes and was recently suggested to function as BSSB reductase (Mikheyeva et al., 2019). Here, we investigated the role of the complete bacilliredoxin BrxAB/BSH/YpdA pathway in S. aureus COL under oxidative stress and macrophage infection conditions in vivo and in biochemical assays in vitro. Using HPLC thiol metabolomics, a strongly enhanced BSSB level and a decreased BSH/BSSB ratio were measured in the S. aureus COL ΔypdA deletion mutant under control and NaOCl stress. Monitoring the oxidation degree (OxD) of the Brx-roGFP2 biosensor revealed that YpdA is required for regeneration of the reduced BSH redox potential (EBSH) upon recovery from oxidative stress. In addition, the ΔypdA mutant was impaired in H2O2 detoxification as measured with the novel H2O2-specific Tpx-roGFP2 biosensor. Phenotype analyses further showed that BrxA and YpdA are required for survival under NaOCl and H2O2 stress in vitro and inside murine J-774A.1 macrophages in infection assays in vivo. Finally, NADPH-coupled electron transfer assays provide evidence for the function of YpdA in BSSB reduction, which depends on the conserved Cys14 residue. YpdA acts together with BrxA and BSH in de-bacillithiolation of S-bacillithiolated GapDH. In conclusion, our results point to a major role of the BrxA/BSH/YpdA pathway in BSH redox homeostasis in S. aureus during recovery from oxidative stress and under infections
    • …
    corecore