3,691 research outputs found
Visual ecology of aphids – a critical review on the role of colours in host finding
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms.
Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region.
We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours
that are not likely to hold. Finally we also discuss the
implications for developing and optimising strategies
of aphid control and monitoring
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
Fitness benefits of prolonged post-reproductive lifespan in women
Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention
Lightweight Interactions for Reciprocal Cooperation in a Social Network Game
The construction of reciprocal relationships requires cooperative
interactions during the initial meetings. However, cooperative behavior with
strangers is risky because the strangers may be exploiters. In this study, we
show that people increase the likelihood of cooperativeness of strangers by
using lightweight non-risky interactions in risky situations based on the
analysis of a social network game (SNG). They can construct reciprocal
relationships in this manner. The interactions involve low-cost signaling
because they are not generated at any cost to the senders and recipients.
Theoretical studies show that low-cost signals are not guaranteed to be
reliable because the low-cost signals from senders can lie at any time.
However, people used low-cost signals to construct reciprocal relationships in
an SNG, which suggests the existence of mechanisms for generating reliable,
low-cost signals in human evolution.Comment: 13 pages, 2 figure
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
- …
