1,996 research outputs found

    The shape and dynamics of a heliotropic dusty ringlet in the Cassini Division

    Full text link
    The so-called "Charming Ringlet" (R/2006 S3) is a low-optical-depth, dusty ringlet located in the Laplace gap in the Cassini Division. This ringlet is particularly interesting because its radial position varies systematically with longitude relative to the Sun in such a way that the ringlet's geometric center appears to be displaced away from Saturn's center in a direction roughly toward the Sun. In other words, the ringlet is always found at greater distances from the planet's center at longitudes near the sub-solar longitude than it is at longitudes near Saturn's shadow. This "heliotropic" behavior indicates that the dynamics of the particles in this ring are being influenced by solar radiation pressure. In order to investigate this phenomenon, which has been predicted theoretically but has never been observed this clearly, we analyze multiple image sequences of this ringlet obtained by Cassini in order to constrain its shape and orientation. These data can be fit reasonably well with a model in which both the eccentricity and the inclination of the ringlet have "forced" components (that maintain a fixed orientation relative to the Sun) as well as "free" components (that drift around the planet at steady rates determined by Saturn's oblateness). While the magnitude of the forced eccentricity is roughly consistent with theoretical expectations for radiation pressure acting on 10-to-100-micron-wide icy grains, the existence of significant free eccentricities and inclinations poses a significant challenge for models of low-optical-depth dusty rings.Comment: 31 pages, 6 figures, accepted for publication in Icarus. Slight edits made to match various proof correction

    Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation

    Get PDF
    SummaryObjectiveThe effects of inflammation on bone development from mesenchymal stem cells (MSC) are unclear due to the difficulty in isolating MSC. The aim of this study was to develop a MSC isolation method and to determine the in vitro effects of interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) on their osteogenic differentiation.MethodsMurine MSC were isolated from the limbs of C57/Bl6 mice through collagenase digestion of bone and enriched as the Stem cell antigen (Sca-1)+ CD31− CD45− population, using lineage immunodepletion, followed by fluorescence-activated cell sorting (FACS). They were differentiated along the osteoblast linage in the presence or absence of IL-1β and TNFα. Mineralization was measured as was the expression of a number of osteogenic genes by quantitative polymerase chain reaction (PCR).ResultsWe show that osteogenic differentiation from the MSC population is suppressed by IL-1β and TNFα. In addition to suppression of bone mineralization, both cytokines inhibited the differentiation-associated increases in alkaline phosphatase (ALP) activity and the gene expression for ALP, α1(I) procollagen, runt-related transcription factor 2 (Runx2) and osterix. However, only TNFα inhibited osteonectin and osteopontin mRNA expression and only IL-1β reduced cell proliferation.ConclusionsThe convenient isolation technique enables the easy generation of sufficient MSC to permit the molecular analysis of their differentiation. We were thus able to show that the proinflammatory cytokines, IL-1β and TNFα, can compromise bone development from this primary MSC population, although with some significant differences. The potential involvement of specific inflammatory mediators needs to be taken into account if optimal bone repair and presumably that of other tissues are to be achieved with MSC

    The three-dimensional structure of Saturn's E ring

    Full text link
    Saturn's diffuse E ring consists of many tiny (micron and sub-micron) grains of water ice distributed between the orbits of Mimas and Titan. Various gravitational and non-gravitational forces perturb these particles' orbits, causing the ring's local particle density to vary noticeably with distance from the planet, height above the ring-plane, hour angle and time. Using remote-sensing data obtained by the Cassini spacecraft in 2005 and 2006, we investigate the E-ring's three-dimensional structure during a time when the Sun illuminated the rings from the south at high elevation angles (> 15 degrees). These observations show that the ring's vertical thickness grows with distance from Enceladus' orbit and its peak brightness density shifts from south to north of Saturn's equator plane with increasing distance from the planet. These data also reveal a localized depletion in particle density near Saturn's equatorial plane around Enceladus' semi-major axis. Finally, variations are detected in the radial brightness profile and the vertical thickness of the ring as a function of longitude relative to the Sun. Possible physical mechanisms and processes that may be responsible for some of these structures include solar radiation pressure, variations in the ambient plasma, and electromagnetic perturbations associated with Saturn's shadow.Comment: 42 Pages, 13 Figures, modified to include minor proof correction

    Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold

    Full text link
    We consider the asymptotic behaviour of positive solutions u(t,x)u(t,x) of the fast diffusion equation ut=Δ(um/m)=div(um1u)u_t=\Delta (u^{m}/m)={\rm div} (u^{m-1}\nabla u) posed for x\in\RR^d, t>0t>0, with a precise value for the exponent m=(d4)/(d2)m=(d-4)/(d-2). The space dimension is d3d\ge 3 so that m<1m<1, and even m=1m=-1 for d=3d=3. This case had been left open in the general study \cite{BBDGV} since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace-Beltrami operator of a suitable Riemannian Manifold (\RR^d,{\bf g}), with a metric g{\bf g} which is conformal to the standard \RR^d metric. Studying the pointwise heat kernel behaviour allows to prove {suitable Gagliardo-Nirenberg} inequalities associated to the generator. Such inequalities in turn allow to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker--Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of mm.Comment: 37 page

    Progressing the care, husbandry and management of ageing mice used in scientific studies

    Get PDF
    Driven by the longer lifespans of humans, particularly in Westernised societies, and the need to know more about ‘healthy ageing’, ageing mice are being used increasingly in scientific research. Many departments and institutes involved with ageing research have developed their own systems to determine intervention points for potential refinements and to identify humane end points. Several good systems are in use, but variations between them could contribute to poor reproducibility of the science achieved. Working with scientific and regulatory communities in the UK, we have reviewed the clinical signs observed in ageing mice and developed recommendations for enhanced monitoring, behaviour assessment, husbandry and veterinary interventions. We advocate that the default time point for enhanced monitoring should be 15 months of age, unless prior information is available. Importantly, the enhanced monitoring should cause no additional harms to the animals. Where a mouse strain is well characterised, the onset of age-related enhanced monitoring may be modified based on knowledge of the onset of an expected age-related clinical sign. In progeroid models where ageing is accelerated, enhanced monitoring may need to be brought forward. Information on the background strain must be considered, as it influences the onset of age-related clinical signs. The range of ageing models currently used means that there will be no ‘one-size fits all’ solution. Increased awareness of the issues will lead to more refined and consistent husbandry of ageing mice, and application of humane end points will help to reduce the numbers of animals maintained for longer than is scientifically justified

    Implementation and second-year impacts for New Deal 25 Plus customers in the UK Employment Retention and Advancement (ERA) demonstration

    Get PDF
    This report presents findings on the implementation and effectiveness of Britain's Employment Retention and Advancement (ERA) demonstration programme for New Deal 25 Plus customers (ND25 Plus) two years after entering the programme. The effectiveness of this programme is being evaluated using a random assignment research design. Over 16,000 people were randomly assigned onto the programme, making this study one of the largest randomised social policy trials ever undertaken in Britain. The analysis relies heavily on data from two waves of a longitudinal customer survey administered at 12 and 24 months respectively, following each individual's date of random assignment (when they entered the study). The survey respondents (around 6,000) are a representative sub-sample of the full sample of ND25 Plus customers enrolled in the study. The analysis also used data on employment, earnings and benefits receipt from administrative records for the entire sample. To provide a richer understanding of the Jobcentre Plus offices' experience of implementing ERA and customers experiences of ERA, the analysis also uses qualitative research involving in-depth interviews with ERA staff and customers

    Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm

    Get PDF
    Higher temperatures lead to an increase of testicular metabolism that results in spermatic damage. Oxidative stress is the main factor responsible for testicular damage caused by heat stress. The aim of this study was to evaluate lasting effects of heat stress on ejaculated sperm and immediate or long-term effects of heat stress on epididymal sperm. We observed decrease in motility and mass motility of ejaculated sperm, as well as an increase in the percentages of sperm showing major and minor defects, damaged plasma and acrosome membranes, and a decrease in the percentage of sperm with high mitochondrial membrane potential in the treated group until one spermatic cycle. An increased enzymatic activity of glutathione peroxidase and an increase of stressed cells were observed in ejaculated sperm of the treated group. A decrease in the percentage of epididymal sperm with high mitochondrial membrane potential was observed in the treated group. However, when comparing immediate and long-term effects, we observed an increase in the percentage of sperm with low mitochondrial membrane potential. In conclusion, testicular heat stress induced oxidative stress that led to rescuable alterations after one spermatic cycle in ejaculated sperm and also after 30 days in epididymal sperm

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres
    corecore