918 research outputs found

    The three-dimensional structure of Saturn's E ring

    Full text link
    Saturn's diffuse E ring consists of many tiny (micron and sub-micron) grains of water ice distributed between the orbits of Mimas and Titan. Various gravitational and non-gravitational forces perturb these particles' orbits, causing the ring's local particle density to vary noticeably with distance from the planet, height above the ring-plane, hour angle and time. Using remote-sensing data obtained by the Cassini spacecraft in 2005 and 2006, we investigate the E-ring's three-dimensional structure during a time when the Sun illuminated the rings from the south at high elevation angles (> 15 degrees). These observations show that the ring's vertical thickness grows with distance from Enceladus' orbit and its peak brightness density shifts from south to north of Saturn's equator plane with increasing distance from the planet. These data also reveal a localized depletion in particle density near Saturn's equatorial plane around Enceladus' semi-major axis. Finally, variations are detected in the radial brightness profile and the vertical thickness of the ring as a function of longitude relative to the Sun. Possible physical mechanisms and processes that may be responsible for some of these structures include solar radiation pressure, variations in the ambient plasma, and electromagnetic perturbations associated with Saturn's shadow.Comment: 42 Pages, 13 Figures, modified to include minor proof correction

    Future Prospects: Deep Imaging of Galaxy Outskirts using Telescopes Large and Small

    Full text link
    The Universe is almost totally unexplored at low surface brightness levels. In spite of great progress in the construction of large telescopes and improvements in the sensitivity of detectors, the limiting surface brightness of imaging observations has remained static for about forty years. Recent technical advances have at last begun to erode the barriers preventing progress. In this Chapter we describe the technical challenges to low surface brightness imaging, describe some solutions, and highlight some relevant observations that have been undertaken recently with both large and small telescopes. Our main focus will be on discoveries made with the Dragonfly Telephoto Array (Dragonfly), which is a new telescope concept designed to probe the Universe down to hitherto unprecedented low surface brightness levels. We conclude by arguing that these discoveries are probably only scratching the surface of interesting phenomena that are observable when the Universe is explored at low surface brightness levels.Comment: 27 pages, 10 figures, Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads

    Get PDF
    Harmful blooms of cyanobacteria (CyanoHABs) have increased globally and cyanotoxins associated with some CyanoHAB species pose serious health risks for animals and humans. CyanoHABs are sensitive to supply rates of both nitrogen and phosphorus, but sensitivity may vary among species (e.g., between diazotrophic and non-diazotrophic species) and a range of physiographic and environmental factors. A sustainable approach to manage CyanoHABs is therefore to limit the supply of nitrogen and phosphorus from catchments to receiving waters. Alternative approaches of within-lake treatment have increased risks and large capital and operational expenditure. The need to manage catchment nutrient loads will intensify with climate change, due to expected increases in nutrient remineralization rates, alteration in hydrological regimes, and increases in lake water temperature and density stratification. Many CyanoHAB species have physiological features that enable them to benefit from the effects of climate change, including positive buoyancy or buoyancy control, high replication rates at elevated water temperature, and nutrient uptake strategies adapted for the intermittency of nutrient supply with greater hydrological variability expected in the future. Greater attention needs to be focused on nonpoint sources of nutrients, including source control, particularly maintaining nitrogen and phosphorus in agricultural soils at or below agronomic optimum levels, and enhancing natural attenuation processes in water and solute transport pathways. Efforts to achieve effective catchment management and avert the dire ecological, human health and economic consequences of CyanoHABs must be intensified in an era of anthropogenically driven environmental change arising from increasing human population, climate change and agricultural intensification

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc

    Natural and anthropogenic lead in sediments of the Rotorua lakes, New Zealand

    Get PDF
    Global atmospheric sources of lead have increased more than 100-fold over the past century as a result of deforestation, coal combustion, ore smelting and leaded petroleum. Lead compounds generally accumulate in depositional areas across the globe where, due to low solubility and relative freedom from microbial degradation, the history of their inputs is preserved. In lakes there is rapid deposition and often little bioturbation of lead, resulting in an excellent depositional history of changes in both natural and anthropogenic sources. The objective of this study was to use sediments from a regionally bounded set of lakes to provide an indication of the rates of environmental inputs of lead whilst taking into account differences of trophic state and lead exposure between lakes. Intact sediment gravity cores were collected from 13 Rotorua lakes in North Island of New Zealand between March 2006 and January 2007. Cores penetrated sediments to a depth of 16–30 cm and contained volcanic tephra from the 1886 AD Tarawera eruption. The upper depth of the Tarawera tephra enabled prescription of a date for the associated depth in the core (120 years). Each core showed a sub-surface peak in lead concentration above the Tarawera tephra which was contemporaneous with the peak use of lead alkyl as a petroleum additive in New Zealand. An 8 m piston core was taken in the largest of the lakes, Lake Rotorua, in March 2007. The lake is antipodal to the pre-industrial sources of atmospheric lead but still shows increasing lead concentrations from <2 up to 3.5 μg g−1 between the Whakatane eruption (5530 ± 60 cal. yr BP) and the Tarawera eruption. Peaks in lead concentration in Lake Rotorua are associated with volcanic tephras, but are small compared with those arising from recent anthropogenic-derived lead deposition. Our results show that diagenetic processes associated with iron, manganese and sulfate oxidation-reduction, and sulfide precipitation, act to smooth distributions of lead from anthropogenic sources in the lake sediments. The extent of this smoothing can be related to changes in sulfate availability and reduction in sulfide driven by differences in trophic status amongst the lakes. Greatest lead mobilisation occurs in mesotrophic lakes during seasonal anoxia as iron and manganese are released to the porewater, allowing upward migration of lead towards the sediment–water interface. This lead mobilisation can only occur if sulfides are not present. The sub-surface peak in lead concentrations in lake sediments ascribed to lead alkyl in petroleum persists despite the diagenetic processes acting to disperse lead within the sediments and into the overlying water

    Scaling in Numerical Simulations of Domain Walls

    Get PDF
    We study the evolution of domain wall networks appearing after phase transitions in the early Universe. They exhibit interesting dynamical scaling behaviour which is not yet well understood, and are also simple models for the more phenomenologically acceptable string networks. We have run numerical simulations in two- and three-dimensional lattices of sizes up to 4096^3. The theoretically predicted scaling solution for the wall area density A ~ 1/t is supported by the simulation results, while no evidence of a logarithmic correction reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of string networks.Comment: 7pp RevTeX, 9 eps files (including six 220kB ones

    Cryogenic Characterization of Commercial SiC Power MOSFETs

    Full text link
    The cryogenic performance of two commercially available SiC power MOSFETs are presented in this work. The devices are characterised in static and dynamic tests at 10 K intervals from 20-320 K. Static current-voltage characterisation indicates that at low temperatures threshold voltage, turn-on voltage, on-state resistance, transconductance, and the body diode turn-on voltage all increase while saturation current decreases. Dynamic, 60 V, 3A switching tests within the cryogenic chamber are also reported and the trends of switching speed, losses, and total power losses, which rise at low temperature, are presented. Overall, both MOSFETs are fully operable down to 20 K with both positive and negative changes in behaviour.</p

    Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change

    Get PDF
    Harmful cyanobacterial blooms (=cyanoHABs) are an increasing feature of many waterbodies throughout the world. Many bloom-forming species produce toxins, making them of particular concern for drinking water supplies, recreation and fisheries in waterbodies along the freshwater to marine continuum. Global changes resulting from human impacts, such as climate change, over-enrichment and hydrological alterations of waterways, are major drivers of cyanoHAB proliferation and persistence. This review advocates that to better predict and manage cyanoHABs in a changing world, researchers need to leverage studies undertaken to date, but adopt a more complex and definitive suite of experiments, observations, and models which can effectively capture the temporal scales of processes driven by eutrophication and a changing climate. Better integration of laboratory culture and field experiments, as well as whole system and multiple-system studies are needed to improve confidence in models predicting impacts of climate change and anthropogenic over-enrichment and hydrological modifications. Recent studies examining adaptation of species and strains to long-term perturbations, e.g. temperature and carbon dioxide (CO2) levels, as well as incorporating multi-species and multi-stressor approaches emphasize the limitations of approaches focused on single stressors and individual species. There are also emerging species of concern, such as toxic benthic cyanobacteria, for which the effects of global change are less well understood, and require more detailed study. This review provides approaches and examples of studies tackling the challenging issue of understanding how global changes will affect cyanoHABs, and identifies critical information needs for effective prediction and management
    corecore